Solution to Problem 510A:

We seek the relation between the velocity, U, of the light-scattering particles in a Laser Doppler Velocimeter and the measured frequency, f, of the scattered light if the wavelength of the laser light is λ and the two laser beams intersect at an angle θ :

The interference pattern (shown in red) in the focal volume where the laser beams meet has a wave spacing of length. ℓ, where by geometry

$$
\begin{equation*}
\ell=\frac{\lambda}{2 \sin (\theta / 2)} \tag{1}
\end{equation*}
$$

and therefore the frequency of the scattered light produced when a particle traverses this interference pattern at velocity, U, is

$$
\begin{equation*}
f=\frac{U}{\ell}=\frac{2 U \sin (\theta / 2)}{\lambda} \tag{2}
\end{equation*}
$$

