An Internet Book on Fluid Dynamics

Solution to Problem 505A

From the potential flow around a sphere we know that the velocity on the surface of the sphere varies with angular position, θ, like $(3 / 2) U \sin \theta$ where U is the velocity of the oncoming uniform stream and θ is the angle measured from the front stagnation point. The point A has $\theta=\beta+\alpha$ while the point B has $\theta=\beta-\alpha$. Denoting the magnitude of the velocities at these two points by u_{A} and u_{B} it follows that

$$
u_{A}=\frac{3 U}{2} \sin (\beta+\alpha) \quad ; \quad u_{B}=\frac{3 U}{2} \sin (\beta-\alpha)
$$

Since potential flow is assumed we may use Bernoulli's equation to relate the pressure, p_{A}, at A to the pressure, p_{B}, at B :

$$
p_{A}+\frac{1}{2} \rho u_{A}^{2}=p_{B}+\frac{1}{2} \rho u_{B}^{2}
$$

since the effect of gravity is neglected.
Substituting for u_{A} and u_{B} :

$$
p_{A}-p_{B}=\frac{9 \rho U^{2}}{8}\left[(\sin (\beta+\alpha))^{2}-(\sin (\beta-\alpha))^{2}\right]
$$

and after manipulation of the trigonometric functions it follows that

$$
\sin 2 \alpha=-\frac{8\left(p_{A}-p_{B}\right)}{9 \rho U^{2} \sin 2 \beta}
$$

