Solution to Problem 454A:

A tidal bore forms in an estuary in which the depth of the water prior to the passage of the bore is $h_{1}=2 m$. If the depth of the water behind the bore is $h_{2}=3 m$ we seek the speed of the bore neglecting the velocity at which the water ahead of the bore is flowing.

First we make a Galilean transformation from the frame of the question (the left-hand diagram) to a frame of reference in which the bore is fixed (the right-hand diagram). Then the analysis is identical with that of a stationary hydraulic jump and we can utilize the basic relation between the conditions on the two sides of the jump namely

$$
\begin{equation*}
h_{2}^{2}+h_{1} h_{2}-\frac{2 Q^{2}}{g h_{1}}=0 \tag{1}
\end{equation*}
$$

where Q is the volume flow rate relative to the jump (per unit breadth of the bore). It follows from this that $Q=12.1 \mathrm{~m}^{2} / \mathrm{s}$. Then back in the frame of reference of the bore and neglecting the water velocity ahead of the bore, it follows that the velocity of the bore, c, is Q / h_{1} or $c=6.06 \mathrm{~m} / \mathrm{s}$.

