Solution to Problem 354D:

An oblique shock wave at an angle $\beta_{1}=40^{\circ}$ to a supersonic flow of Mach number 2.5 reflects from a flat wall as shown below:

Ground

First analyze the incident shock wave whose upstream Mach number $M_{1}=2.5$ and whose inclination to the incoming flow is $\beta_{1}=40^{\circ}$. From the oblique shock graph the flow deflection angle, $\theta=17.7^{\circ}$. Also since $M_{1} \sin \beta_{1}=1.607$ from the shock wave table we find that $M_{2} \sin \left(\beta_{1}-\theta\right)=0.666$ and therefore $M_{2}=1.755$.

Shifting attention to the reflected shock whose incoming Mach number is $M_{2}=1.755$ and whose flow deflection must turn the flow back to be parallel with the wall so the deflection angle must be $\theta=17.7^{\circ}$. The oblique shock graph yields the angle $\beta_{2}=61^{\circ}$ and therefore the inclination of this downstream flow to the wall must be $\gamma=\beta_{2}-\theta=43.3^{\circ}$. Notice that the reflection angle of 43.3° is larger than the incident angle of 40°. Moreover, since $M_{2} \sin \beta_{2}=1.535$ it follows from the shock wave table that $M_{3} \sin \left(\beta_{2}-\theta\right)=0.697$ and therefore $M_{3}=1.02$.

