An Internet Book on Fluid Dynamics

Solution to Problem 354C:

The oblique shock generated at the leading edge will be reflected by the ground and may or may not impinge on the foil. The critical clearance, $h_{\text {crit }}$, will be that at which the reflected shock just touches the trailing edge.

In terms of the angles β and γ shown above, it follows from the geometry that

$$
\begin{equation*}
\frac{h_{\text {crit }}}{c}=\left[\frac{\sin 20^{\circ}}{\tan \gamma}+\cos 20^{\circ}\right]\left[\frac{1}{\tan \beta}+\frac{1}{\tan \gamma}\right]^{-1} \tag{1}
\end{equation*}
$$

Now to find β and γ. With $M_{1}=5$ and an angle of turn of 20°, the oblique shock table or graph gives $\beta=30^{\circ}$. Hence $M_{1} \sin \beta=2.5$ and the shock table yields $M_{2} \sin (\beta-\theta)=0.513$ and therefore $M_{2}=2.95$.

Since the angle of turn through the reflected shock is 20° and the upstream Mach number for the reflected shock is 2.95 it follows from the oblique shock table or graph that the flow deflection angle through the reflected shock is $\beta_{2}=38^{\circ}$ and therefore the inclination, $\gamma=38^{\circ}-20^{\circ}=18^{\circ}$.

With these angles the above geometrical relation yields

$$
\begin{equation*}
\frac{h_{c r i t}}{c}=0.414 \tag{2}
\end{equation*}
$$

