## An Internet Book on Fluid Dynamics

## Solution to Problem 354B

1.) Find the inclination angle, $\phi$, of the reflected shock.

Based on the given oblique shock wave angle and the oncoming Mach number, $M_{1}$, we can find the angle through which the flow is deflected by the airplane from the $\theta-\beta-M$ relation:

$$
\begin{gathered}
\tan \theta=2 \cot \beta\left[\frac{M_{1}^{2} \sin ^{2} \beta-1}{M_{1}^{2}(\gamma+\cos 2 \beta)+2}\right] \\
\Rightarrow \theta=17.68^{\circ}
\end{gathered}
$$

Finding the incoming Mach number normal to the surface of the oblique shock:

$$
M_{1 n}=M_{1} \sin \beta=1.607
$$

We use the normal shock relations to find the Mach number behind the shock.

$$
\begin{aligned}
M_{2 n}^{2} & =\frac{1+\frac{\gamma-1}{2} M_{1}^{2}}{\gamma M_{1}^{2}-\frac{\gamma-1}{2}}=0.444 \\
& \Rightarrow M_{2 n}=0.66635 \\
M_{2} & =\frac{M_{2 n}}{\sin (\beta-\theta)}=1.75
\end{aligned}
$$

The reflected shock will turn the flow so that it is again parallel with the ground. We use the deflection angle, $\theta=17.68$, and $M_{2}=1.75$ on the graph of oblique shock properties to find the reflected oblique shock wave angle, $\beta_{2}$.

$$
\Rightarrow \beta_{2}=60.46^{\circ}
$$

From the geometry:

$$
\begin{gathered}
\phi+\theta=\beta_{2} \\
\Rightarrow \phi=\beta_{2}-\theta=60.46^{\circ}-17.68^{\circ}=42.8^{\circ}
\end{gathered}
$$

2.) Find the Mach number downstream of the reflected shock.

The oncoming Mach number normal to the reflected shock is:

$$
M_{2 n}=M_{2} \sin \beta_{2}=1.53
$$

Using the normal shock relations to find the normal Mach number downstream of the reflected shock:

$$
\begin{aligned}
M_{3 n}^{2}= & \frac{1+\frac{\gamma-1}{2} M_{2 n}^{2}}{\gamma M_{2 n}^{2}-\frac{\gamma-1}{2}}=0.4789 \\
& \Rightarrow M_{3 n}=0.69 \\
M_{3}= & \frac{M_{3 n}}{\sin \left(\beta_{2}-\theta\right)}=1.02
\end{aligned}
$$

