Solution to Problem 352F:

From the oblique shock graph for $M_{1}=3$ and $\theta=30^{\circ}$, we learn that $\beta=52^{\circ}$ and therefore $M_{1} \sin \beta=2.364$. Then using the normal shock wave table we find $M_{2} \sin (\beta-\theta)=5.28$ and so $M_{2}=1.41$ and $p_{2} / p_{1}=6.35$.

Then shifting attention to the Prandtl-Meyer fan at the shoulder, from the Prandtl-Meyer function table, $\nu(1.41)=9.25^{\circ}$, and since the angle of turn is 50°, it follows that $\nu\left(M_{3}\right)=59.25^{\circ}$ and therefore from the Prandtl-Meyer function table, $M_{3}=3.55$. Moreover, from the isentropic flow table

$$
\begin{equation*}
\frac{p_{2}}{p_{02}}=0.310 \quad \text { and } \quad \frac{p_{3}}{p_{02}}=0.012 \tag{1}
\end{equation*}
$$

where p_{02} is the reservoir pressure for regions 2 and 3 (not equal to p_{1}). It follows that

$$
\begin{equation*}
\frac{p_{3}}{p_{2}}=0.039 \text { and } \frac{p_{3}}{p_{1}}=0.248 \tag{2}
\end{equation*}
$$

Denoting the frontal projected area by A the drag is $\left(p_{2}-p_{3}\right) A$ and the drag coefficient, C_{D}, becomes

$$
\begin{equation*}
C_{D}=\frac{2 p_{1}}{\rho_{1} u_{1}^{2}}\left[\frac{p_{2}}{p_{1}}-\frac{p_{3}}{p_{2}} \frac{p_{2}}{p_{1}}\right]=\frac{2}{\gamma M_{1}^{2}}\left[\frac{p_{2}}{p_{1}}-\frac{p_{3}}{p_{2}} \frac{p_{2}}{p_{1}}\right] \tag{3}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
C_{D}=\frac{2}{1.4 \times 9}(6.35-6.35 \times 0.039)=0.969 \tag{4}
\end{equation*}
$$

