Solution to Problem 352F:

From the oblique shock graph for $M_1 = 3$ and $\theta = 30^\circ$, we learn that $\beta = 52^\circ$ and therefore $M_1 \sin \beta = 2.364$. Then using the normal shock wave table we find $M_2 \sin (\beta - \theta) = 5.28$ and so $M_2 = 1.41$ and $p_2/p_1 = 6.35$.

Then shifting attention to the Prandtl-Meyer fan at the shoulder, from the Prandtl-Meyer function table, $\nu(1.41) = 9.25^{\circ}$, and since the angle of turn is 50°, it follows that $\nu(M_3) = 59.25^{\circ}$ and therefore from the Prandtl-Meyer function table, $M_3 = 3.55$. Moreover, from the isentropic flow table

$$\frac{p_2}{p_{02}} = 0.310 \text{ and } \frac{p_3}{p_{02}} = 0.012$$
 (1)

where p_{02} is the reservoir pressure for regions 2 and 3 (not equal to p_1). It follows that

$$\frac{p_3}{p_2} = 0.039$$
 and $\frac{p_3}{p_1} = 0.248$ (2)

Denoting the frontal projected area by A the drag is $(p_2 - p_3)A$ and the drag coefficient, C_D , becomes

$$C_D = \frac{2p_1}{\rho_1 u_1^2} \left[\frac{p_2}{p_1} - \frac{p_3}{p_2} \frac{p_2}{p_1} \right] = \frac{2}{\gamma M_1^2} \left[\frac{p_2}{p_1} - \frac{p_3}{p_2} \frac{p_2}{p_1} \right]$$
(3)

and therefore

$$C_D = \frac{2}{1.4 \times 9} \left(6.35 - 6.35 \times 0.039 \right) = 0.969 \tag{4}$$