An Internet Book on Fluid Dynamics

Solution to Problem 352B

Region 2: Prandtl-Meyer Expansion
We calculate the Mach number in region 2 by determining the value of the Prandtl-Meyer function in this region. We use the chart of tabulated Prandtl-Meyer function values to get ν_{1}.

$$
\nu_{1}\left(M_{1}=3\right)=49.76^{\circ}
$$

The value of the Prandtl-Meyer function in region 2 is then the value in region 1 plus the turn angle.

$$
\nu_{2}=49.76^{\circ}+20^{\circ}=69.76^{\circ}
$$

Using the chart again to get the Mach number in region 2:

$$
\Rightarrow M_{2}=4.32
$$

Since the expansion is an isentropic process, we can use the isentropic flow relations to find the pressure ratio between regions 1 and 2.

$$
\begin{gathered}
\frac{p_{0}}{p}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}} \\
\frac{p_{2}}{p_{1}}=\frac{p_{2}}{p_{0}} \frac{p_{0}}{p_{1}}=\left(\frac{1+\frac{\gamma-1}{2} M_{1}^{2}}{1+\frac{\gamma-1}{2} M_{2}^{2}}\right)^{\frac{\gamma}{\gamma-1}}=0.1593
\end{gathered}
$$

Region 3: Oblique Shock
From the graph of oblique shock properties with $M_{1}=3, \theta=20^{\circ}$:

$$
\beta=37.8^{\circ}
$$

The incoming Mach number normal to the oblique shock is then:

$$
M_{n 1}=M_{1} \sin \beta=3 \sin 37.8^{\circ}=1.84
$$

We can then use the normal shock relations to find the pressure ratio across the oblique shock.

$$
\frac{p_{3}}{p_{1}}=1+\frac{2 \gamma}{\gamma+1}\left(M_{1 n}^{2}-1\right)=3.78
$$

Forces
Calculating the lift as the pressure over the area, A, on each surface of the flat plate airfoil projected onto the direction perpendicular to the oncoming freestream.

$$
\begin{aligned}
L & =p_{3} A \cos 20^{\circ}-p_{2} A \cos 20^{\circ} \\
C_{L} & =\frac{L}{\frac{1}{2} \rho_{1} U_{1}^{2} A}=\frac{p_{3}-p_{2}}{\frac{1}{2} \rho_{1} U_{1}^{2}} \cos 20^{\circ}
\end{aligned}
$$

Using the definition of the sound speed $\left(a^{2}=\frac{\gamma p}{\rho}\right)$ to write the coefficient of lift in terms of the Mach number:

$$
C_{L}=\left(\frac{p_{3}}{p_{1}}-\frac{p_{2}}{p_{1}}\right) \frac{2}{\gamma M_{1}^{2}} \cos 20^{\circ}=0.540
$$

Comparing this to the result from the theory for small angles of turn:

$$
C_{L}=\frac{4 \alpha}{\sqrt{M_{1}^{2}-1}}=0.494
$$

