Solution to Problem 352A:

Using the oblique shock graph with $M=5$ and $\theta=20^{\circ}$, the oblique shock inclination to the horizontal is $\beta=30^{\circ}$. Then $M_{1} \sin \beta=5 \sin 30^{\circ}=2.5$. Then using the shock wave table, $M_{2} \sin (\beta-\theta)=0.513$ and hence $M_{2}=2.95$.

Now consider the Prandtl-Meyer expansion fan with the upstream Mach number $M_{2}=2.95$. From the Prandtl-Meyer function graph or table, it follows that $\nu\left(M_{2}\right)=48.8^{\circ}$. Therefore the maximum angle of turn at the vertex is $130.5^{\circ}-48.8^{\circ}=81.7^{\circ}$ and therefore the maximum value of θ for which the flow would remain attached is $\theta=81.7^{\circ}-20^{\circ}=61.7^{\circ}$.

