Solution to Problem 350A:

The upstream Mach number, M_1 , is

$$M_1 = \frac{1200}{(1.4 \times 280 \times 230)^{1/2}} = 4 \tag{1}$$

and using the table for the Prandtl-Meyer function, $\nu(M_1) = 65.8^\circ$, and therefore $\nu(M_2) = (65.8 + 35)^\circ = 100.8^\circ$ and $M_2 = 9.5$.

The expansion through the Prandtl-Meyer fan is isentropic so from the isentropic tables

$$\frac{T_2}{T_1} = \frac{T_2}{T_0} \frac{T_0}{T_1} = \frac{0.052}{0.238} = 0.218$$
(2)

and therefore $T_2 = 50.2^{\circ}K$. Also

$$\frac{u_2}{u_1} = \frac{u_2}{u^*} \frac{u^*}{u_1} = \frac{2.384}{2.138} = 1.115$$
(3)

and therefore $u_2 = 1338m/s$.

In the limit as $\nu(M_2) \to 130.5^\circ$, then $\nu(M_1) \to 130.5^\circ - 35^\circ = 95.5^\circ$ and therefore

$$M_1 \rightarrow 8 \text{ and } T_1 = \frac{u_1^2}{M_1^2 \gamma \mathcal{R}} = 57.4^\circ K$$
 (4)