Solution to Problem 350A:

The upstream Mach number, M_{1}, is

$$
\begin{equation*}
M_{1}=\frac{1200}{(1.4 \times 280 \times 230)^{1 / 2}}=4 \tag{1}
\end{equation*}
$$

and using the table for the Prandtl-Meyer function, $\nu\left(M_{1}\right)=65.8^{\circ}$, and therefore $\nu\left(M_{2}\right)=(65.8+35)^{\circ}=$ 100.8° and $M_{2}=9.5$.

The expansion through the Prandtl-Meyer fan is isentropic so from the isentropic tables

$$
\begin{equation*}
\frac{T_{2}}{T_{1}}=\frac{T_{2}}{T_{0}} \frac{T_{0}}{T_{1}}=\frac{0.052}{0.238}=0.218 \tag{2}
\end{equation*}
$$

and therefore $T_{2}=50.2^{\circ} \mathrm{K}$. Also

$$
\begin{equation*}
\frac{u_{2}}{u_{1}}=\frac{u_{2}}{u^{*}} \frac{u^{*}}{u_{1}}=\frac{2.384}{2.138}=1.115 \tag{3}
\end{equation*}
$$

and therefore $u_{2}=1338 \mathrm{~m} / \mathrm{s}$.
In the limit as $\nu\left(M_{2}\right) \rightarrow 130.5^{\circ}$, then $\nu\left(M_{1}\right) \rightarrow 130.5^{\circ}-35^{\circ}=95.5^{\circ}$ and therefore

$$
\begin{equation*}
M_{1} \rightarrow 8 \quad \text { and } \quad T_{1}=\frac{u_{1}^{2}}{M_{1}^{2} \gamma \mathcal{R}}=57.4^{\circ} \mathrm{K} \tag{4}
\end{equation*}
$$

