An Internet Book on Fluid Dynamics

Solution to Problem 345A:

Find the drag coefficient, C_{D}, for a slender two-dimensional wedge placed symmetrically in a subsonic, inviscid uniform stream of Mach number, M :

The solution to this problem is to find the drag coefficient for the incompressible flow first and then use the Prandtl-Glauert transformation to find the subsonic flow drag coefficient.

First to find the drag coefficient for the incompressible flow. Since $q=C s^{m}$ along the inclined surfaces of the wedge, it follows from Bernoulli's equation that the pressure

$$
\begin{gather*}
p=p_{\infty}+\frac{1}{2} \rho U_{\infty}^{2}-\frac{1}{2} \rho C^{2} s^{2 m} \tag{1}\\
p=p_{\infty}+\frac{1}{2} \rho U_{\infty}^{2}-\frac{1}{2} \rho C^{2} \frac{y^{2 m}}{(\sin \beta)^{2 m}} \tag{2}
\end{gather*}
$$

where y is a coordinate measured perpendicular to the centerline of the wedge and $y= \pm h$ at the vertices B and C. But since $p=p_{\infty}$ at $y=h$ it follows that

$$
\begin{equation*}
\frac{C^{2}}{(\sin \beta)^{2 m}}=\frac{U_{\infty}^{2}}{h^{2 m}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
p=p_{\infty}+\frac{1}{2} \rho U_{\infty}^{2}\left[1-\left(\frac{y}{h}\right)^{2 m}\right] \tag{4}
\end{equation*}
$$

so the coefficient of pressure, C_{p}^{*}, is

$$
\begin{equation*}
C_{p}^{*}=\left[1-\left(\frac{y}{h}\right)^{2 m}\right] \tag{5}
\end{equation*}
$$

Since the pressure on the base is p_{∞}, the drag per unit depth normal to the sketch, D, is

$$
\begin{equation*}
D=2 \int_{0}^{h}\left(p-p_{\infty}\right) d y=\rho U_{\infty}^{2} h \frac{2 m}{(2 m+1)} \tag{6}
\end{equation*}
$$

and therefore the drag coefficient is

$$
\begin{equation*}
C_{D}=\frac{2 m}{(2 m+1)} \tag{7}
\end{equation*}
$$

Then using the Prandtl-Glauert transformation the drag coefficient in subsonic flow is

$$
\begin{equation*}
C_{D}=\frac{2 m}{(2 m+1)\left(1-M^{2}\right)^{1 / 2}}=\frac{2 \beta}{(\pi+\beta)\left(1-M^{2}\right)^{1 / 2}} \tag{8}
\end{equation*}
$$

Addendum: The above is the most accurate solution to the question. There is, however, another, less accurate solution based on a slender body approach in which the velocity, u, only deviates by a small amount from the free stream velocity, U_{∞}. Specifically, $u=U_{\infty}+\Delta u$ where $\Delta u \ll U_{\infty}$. Then the coefficient of pressure, C_{p}^{*}, for the incompressible flow is given by $C_{p}^{*} \approx-2 \Delta u / U_{\infty}$ and therefore in the present subsonic flow

$$
\begin{equation*}
C_{p}^{*}=2\left(1-\frac{C s^{m}}{U_{\infty}}\right)=2\left[1-\left(\frac{y}{h}\right)^{m}\right] \tag{9}
\end{equation*}
$$

Note that this is different from the preceding solution. However, they both tend to the same limit when Δu and C_{p}^{*} are small. However with this alternative C_{p}^{*}

$$
\begin{equation*}
C_{D}=\frac{2 m}{(m+1)\left(1-M^{2}\right)^{1 / 2}}=\frac{2 \beta}{\pi\left(1-M^{2}\right)^{1 / 2}} \tag{10}
\end{equation*}
$$

which, for small β or m, is approximately the same as the previous result.

