Solution to Problem 344A:

Consider first the appropriate **incompressible** velocity potential that must involve terms with $\sin kx$ or $\cos kx$:

$$\phi = A e^{-ky} \sin kx + B e^{-ky} \cos kx \tag{1}$$

where terms involving e^{+ky} are clearly unacceptable and have been omitted.

Then in the compressible flow the equivalent velocity potential will follow from the **Prandtl-Glauert** transformation in which y is replaced by $(1 - M^2)^{1/2}y$:

$$\phi = A e^{-ky(1-M^2)^{1/2}} \sin kx + B e^{-ky(1-M^2)^{1/2}} \cos kx$$
(2)

Alternatively this could be obtained by separation of variables applied to the equation that ϕ must satisfy, namely,

$$(1 - M^2)\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$
(3)

Adding the uniform stream potential $\phi = Ux$ to the above yields the appropriate form for the velocity potential of this flow:

$$\phi = Ux + Ae^{-ky(1-M^2)^{1/2}} \sin kx + Be^{-ky(1-M^2)^{1/2}} \cos kx \tag{4}$$

The boundary condition that must be satisfied at the wavy surface is

$$v = \left(\frac{\partial\phi}{\partial y}\right)_{y=0} = U\frac{dh}{dx} \tag{5}$$

and so it follows that A = 0 and $B = -Ua/(1 - M^2)^{1/2}$. Therefore the final result is

$$\phi = Ux - \frac{Ua}{(1 - M^2)^{1/2}} e^{-ky(1 - M^2)^{1/2}} \cos kx$$
(6)