An Internet Book on Fluid Dynamics

Solution to Problem 340A:

Using the theory for small angles of turn, behind the bow wave in region 1, the pressure is

and behind the shoulder wave in region 2

$$
\begin{equation*}
\frac{p_{2}-p_{\infty}}{p_{\infty}}=-\frac{\gamma M^{2}}{\left(M^{2}-1\right)^{1 / 2}} \beta \tag{2}
\end{equation*}
$$

Then denoting the drag per unit depth normal to the sketch by D :

$$
\begin{equation*}
D=h\left(p_{1}-p_{2}\right) \tag{3}
\end{equation*}
$$

and the drag coefficient

$$
\begin{equation*}
C_{D}=\frac{2 D}{\rho U_{\infty}^{2} h}=\frac{2\left(p_{1}-p_{2}\right)}{\rho U_{\infty}^{2}}=\frac{2(\alpha+\beta)}{\left(M^{2}-1\right)^{1 / 2}} \tag{4}
\end{equation*}
$$

If the wedge were turned around then

$$
\begin{equation*}
\frac{p_{1}-p_{\infty}}{p_{\infty}}=\frac{\gamma M^{2}}{\left(M^{2}-1\right)^{1 / 2}} \beta \quad \text { and } \quad \frac{p_{2}-p_{\infty}}{p_{\infty}}=-\frac{\gamma M^{2}}{\left(M^{2}-1\right)^{1 / 2}} \alpha \tag{5}
\end{equation*}
$$

and C_{D} would be unchanged. Or you could realize that exchanging α and β is the expression for C_{D} would leave it unchanged.

