An Internet Book on Fluid Dynamics

Solution to Problem 336A:

Compressed air $(\gamma=1.4)$ is supplied from a reservoir to a pipe, 1.0 cm in diameter and 5.0 m long. It is estimated that the average friction factor, f, of the flow in the pipe is 0.02 . At the end of this long pipe is a short nozzle whose opening to the atmosphere has one half of the cross-sectional area of the pipe. Assuming that frictional effects in the nozzle can be neglected, we seek the following information pertaining to conditions when the flow through the pipe/nozzle combination is choked.
[A] In the nozzle: Neglecting frictional effects in the nozzle, choked flow occurs with $A / A^{*}=2$ where A is the entrance area and A^{*} is the exit area. Then the flow at the end of the pipe (or entrance to the nozzle, point 2) has $M_{2}=0.31$ and $p_{2} / p_{02}=0.936$. But since $p^{*} / p_{0}=0.528$ it follows that

$$
\begin{equation*}
\frac{\text { Pressure at } 2, \text { the entrance to the nozzle }}{\text { Nozzle exit pressure, } p^{*}}=\frac{0.936}{0.528}=1.77 \tag{1}
\end{equation*}
$$

[B] In the long pipe: If the pipe continued beyond the point 2 , then the distance L_{2} from the point 2 to the point where it hypothetically would reach $M=1$ is given from the table on frictional effects in compressible pipe flow (with an entrance Mach number of 0.31) by

$$
\begin{equation*}
\frac{f L_{2}}{D}=4.93 \text { and } \frac{p_{2}}{p^{*}}=3.5 \tag{2}
\end{equation*}
$$

But with the actual length of $L=5 \mathrm{~m}$ it follows that

$$
\begin{equation*}
\frac{f L}{D}=\frac{0.02 \times 5}{0.01}=10 \tag{3}
\end{equation*}
$$

Therefore the distance L_{1} from the pipe entrance to the hypothetical $M=1$ point is given by

$$
\begin{equation*}
\frac{f L_{1}}{D}=10+4.93=14.93 \tag{4}
\end{equation*}
$$

and from the frictional table when $f L_{1} / D=14.93$ and the pipe entrance Mach number of $M=0.2$ it follows that $p_{1} / p_{01}=0.972$. Therefore

$$
\begin{equation*}
\frac{\text { Reservoir pressure }}{\text { Nozzle throat pressure }}=\frac{p_{01}}{p_{1}} \frac{p_{1}}{p_{2}} \frac{p_{2}}{p_{\text {nozzlethroat }}}=\frac{1.57 \times 1.77}{0.972}=2.86 \tag{5}
\end{equation*}
$$

Therefore the ratio of the pressure in the reservoir to the pressure in the exit (throat) from the nozzle is 2.86 .

