An Internet Book on Fluid Dynamics

Solution to Problem 332B:

A crude de Laval nozzle with a throat area, A^{*}, and a diffuser exit area 16 times larger $\left(A=16 A^{*}\right)$ is made using a straight-sided conical diffuser as indicated below: The nozzle is supplied from an air reservoir

$(\gamma=1.4)$ of pressure, p_{0}; the external pressure of the air downstream of the diffuser exit is p_{E}. We seek the ratio p_{E} / p_{0} at which a normal shock will form half-way along the diffuser, that is to say at $x / L=0.5$.

First a little geometry. Since the shock is halfway along the diffuser, it follows that the area of the flow at the shock, $A_{S}=6.25 A^{*}$. Then using the shock wave table for $A_{S} / A^{*}=6.25$ we find that the Mach number, M_{1}, of the flow just upstream of the shock is $M_{1}=3.39$ and the pressure just upstream of the shock, p_{1}, is related to the total pressure of the flow at that point, p_{01}, by $p_{1} / p_{01}=0.01596$. Since the total pressure in the isentropic flow upstream of the shock is the same everywhere upstream of the shock it follows that p_{01} is also the pressure in the reservoir, p_{0}.

From the shock wave table if $M_{1}=3.39$, then the Mach number of the flow just downstream of the shock is $M_{2}=0.456$ and the pressure just downstream of the shock, p_{2}, is given by $p_{2} / p_{1}=13.32$. Therefore, from the isentropic flow table $A_{S} / A_{2}^{*}=1.44$ where A_{2}^{*} is the "throat area" of the flow downstream of the shock. In addition, from the isentropic flow table $p_{2} / p_{02}=0.867$ where p_{02} is the total pressure downstream of the shock which is the same everywhere downstream of the shock.

It follows that since $A_{2}^{*}=A_{S} / 1.44$ and $A=16 A^{*}$ then $A=3.67 A_{2}^{*}$ and using this area ratio in the isentropic flow, it transpires that the exit pressure, p_{E}, is given by $p_{E} / p_{02}=0.981$.

Finally then

$$
\begin{equation*}
\frac{p_{E}}{p_{0}}=\frac{p_{E}}{p_{01}}=\frac{p_{1}}{p_{01}} \frac{p_{2}}{p_{1}} \frac{p_{02}}{p_{2}} \frac{p_{E}}{p_{02}}=\frac{0.0159 \times 13.32 \times 0.981}{0.867}=0.241 \tag{1}
\end{equation*}
$$

