An Internet Book on Fluid Dynamics

Solution to Problem 303A:

An air blower takes air $\left(\mathcal{R}=280 \mathrm{~m}^{2} / \mathrm{s}^{2}{ }^{\circ} \mathrm{K}, \gamma=1.4\right)$ from the atmosphere (pressure, $p_{A}=100,000 \mathrm{~kg} / \mathrm{ms} 2$, temperature, $T_{A}=293^{\circ} \mathrm{K}$) and ingests it through a smooth entry duct so that the losses are negligible. The cross-sectional area of the entry duct just upstream of the blower and that of the exit duct are both $0.01 \mathrm{~m}^{2}$. The pressure ratio, p_{2} / p_{1}, across the blower itself is 1.05 and the exit pressure is equal to the atmospheric pressure, p_{A}. The air is assumed to behave isentropically upstream of the blower.

1. Since $p_{2}=p_{A}$ and $p_{2} / p_{1}=1.05$ then $p_{1} / p_{A}=1 / 1.05$ and since the upstream flow is isentropic:

$$
\begin{equation*}
\frac{T_{1}}{T_{A}}=\left(\frac{1}{1.05}\right)^{(\gamma-1) / \gamma}=\left(\frac{1}{1.05}\right)^{2 / 7} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{p} T_{1}+u_{1}^{2} / 2=c_{p} T_{A} \tag{2}
\end{equation*}
$$

therefore, the velocity of the air entering the blower is

$$
\begin{equation*}
u_{1}=\left[2 c_{p} T_{A}\left(1-(1.05)^{-2 / 7}\right)\right]^{1 / 2}=89 \mathrm{~m} / \mathrm{s} \tag{3}
\end{equation*}
$$

2. Since the density upstream $\rho_{1}=\rho_{A}\left(p_{1} / p_{A}\right)^{1 / \gamma}=1.18 \mathrm{~kg} / \mathrm{m}^{3}$ the mass flow rate of air through the system is

$$
\begin{equation*}
\rho_{1} u_{1} A_{1}=1.18 \times 89 \times 0.01=1.05 \mathrm{~kg} / \mathrm{s} \tag{4}
\end{equation*}
$$

