An Internet Book on Fluid Dynamics

Solution to Problem 302B:

Air $\left(\mathcal{R}=280 \mathrm{~m}^{2} / \mathrm{s}^{2}{ }^{\circ} \mathrm{K}, \gamma=1.4\right)$ at a temperature of $30^{\circ} \mathrm{C}$ flows down a duct at a velocity of $30 \mathrm{~m} / \mathrm{s}$. The flow then proceeds through a compressor into a smaller duct where it travels at $200 \mathrm{~m} / \mathrm{s}$. If the rate of work done on the air by the compressor per unit mass of the air flowing through it is $1 \mathrm{~kW} \mathrm{~s} / \mathrm{kg}$ what is the temperature of the air in the duct downstream of the compressor? (Note: $1 \mathrm{watt}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{m}^{3}$; $1 \mathrm{~kW}=1000 \mathrm{watts}$)

Denoting the properties upstream by the subscript 1 and the properties downstream by the subscript 2, the energy equation yields

$$
\begin{equation*}
h_{2}^{*}-h_{1}^{*}=40 \times 1000 \mathrm{~m}^{2} / \mathrm{s}^{2} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{p}\left(T_{2}-T_{1}\right)+\frac{1}{2}\left(u_{2}^{2}-u_{1}^{2}\right)=4 \times 10^{4} \mathrm{~m}^{2} / \mathrm{s}^{2} \tag{2}
\end{equation*}
$$

Also with $c_{p}=\gamma \mathcal{R} /(\gamma-1)=980 m^{2} / s^{2} \circ \mathrm{~K}$ it follows that

$$
\begin{equation*}
T_{2}=T_{1}-\frac{1}{2 \times 980}\left(u_{2}^{2}-u_{1}^{2}\right)+\frac{4 \times 10^{4}}{980}=50.9^{\circ} \mathrm{C} \tag{3}
\end{equation*}
$$

Note that the temperature decreased due to the acceleration but increased due to the work done.

