Solution to Problem 301A:

1. The temperature at the stagnation point of the flow around the airplane, T_S , is related to the temperature far from the plane, T_{∞} , by

$$\frac{T_S}{T_\infty} = 1 + \frac{U_\infty^2}{2c_p T_\infty} \tag{1}$$

where $U_{\infty} = 400m/s$ is the velocity of the airplane and c_p is the specific heat at constant pressure which is given by $c_p = \gamma \mathcal{R}/(\gamma - 1)$ where \mathcal{R} is the gas constant for air $(280m^2/s^2 \,^{\circ}K)$ and γ is the ratio of specific heats (1.4). This yields $T_s = 295^{\circ}K$.

2. The ratio of the pressure at the stagnation point, p_S , to that far from the airplane, p_{∞} , assuming isentropic flow is given by

$$\frac{p_S}{p_{\infty}} = \left(\frac{T_S}{T_{\infty}}\right)^{\frac{\gamma}{(\gamma-1)}} = 3.11 \tag{2}$$

3. If the speed of the airplane is 1000m/s, the stagnation temperature will be given by the first equation with $U_{\infty} = 1000m/s$ so

$$T_S = 723^{\circ}K \tag{3}$$