Solution to Problem 301A:

1. The temperature at the stagnation point of the flow around the airplane, T_{S}, is related to the temperature far from the plane, T_{∞}, by

$$
\begin{equation*}
\frac{T_{S}}{T_{\infty}}=1+\frac{U_{\infty}^{2}}{2 c_{p} T_{\infty}} \tag{1}
\end{equation*}
$$

where $U_{\infty}=400 \mathrm{~m} / \mathrm{s}$ is the velocity of the airplane and c_{p} is the specific heat at constant pressure which is given by $c_{p}=\gamma \mathcal{R} /(\gamma-1)$ where \mathcal{R} is the gas constant for air $\left(280 \mathrm{~m}^{2} / \mathrm{s}^{2}{ }^{\circ} \mathrm{K}\right)$ and γ is the ratio of specific heats (1.4). This yields $T_{S}=295^{\circ} \mathrm{K}$.
2. The ratio of the pressure at the stagnation point, p_{S}, to that far from the airplane, p_{∞}, assuming isentropic flow is given by

$$
\begin{equation*}
\frac{p_{S}}{p_{\infty}}=\left(\frac{T_{S}}{T_{\infty}}\right)^{\frac{\gamma}{(\gamma-1)}}=3.11 \tag{2}
\end{equation*}
$$

3. If the speed of the airplane is $1000 \mathrm{~m} / \mathrm{s}$, the stagnation temperature will be given by the first equation with $U_{\infty}=1000 \mathrm{~m} / \mathrm{s}$ so

$$
\begin{equation*}
T_{S}=723^{\circ} \mathrm{K} \tag{3}
\end{equation*}
$$

