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Solution to Problem 295C:

In a frame of reference fixed in a whale, the motion of the tail (the “fluke”), depicted in Figure 1, can be
described as follows:

1. An oncoming uniform stream of velocity, U , representing the forward speed of the whale (in the
direction, x).

2. A “heave” motion of the fluke in the direction, y, perpendicular to the x direction. It is assumed
that this motion, in combination with the forward motion, U , produces a sinusoidal trajectory of the
center of the fluke (as sketched in Figure 1) such that the center of the fluke moves according to

y = h sinωt (Dfd1)

where ω is the frequency of the oscillatory motion and h is the amplitude. Consequently the wave-
length. λ, of the motion is given by λ = 2πU/ω. It also follows that the inclination of the trajectory
with respect to the x axis (as shown in Figure 1) is θ where
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3. A oscillatory rotation of the fluke about its center (or pitching motion) such that the inclination of
the fluke relative to the x direction is α where

α = α̃ cosωt (Dfd4)

Figure 1: Caudal fin or fluke trajectory and orientation.



We note that the phase relationship of the second and third of these oscillatory motions is such that the
relative pitching motion, θ − α, lags the heaving motion by π/2. This common feature of fish, whale and
bird motion is mostly achieved passively by the nature of the structure of the spine, fluke or wing.

Returning to the analysis of fish and cetacea propulsion, it follows that the angle of incidence of the fluke
with respect to its relative motion through the fluid, α∗, is given by

α∗ = θ − α = arctan
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Moreover the magnitude of the velocity of relative motion, V , is given by

V 2 = U2 + (
dy

dt
)2 = U2 + ω2h2 cos2(ωt) (Dfd6)

and therefore the lift and drag forces acting on the fluke (planform area, AF ), L and D, are given by
1
2
ρV 2AFCL and 1

2
ρV 2AFCD respectively where CL and CD are the lift and drag coefficients for the fluke.

It follows that the component of the instantaneous propulsive force in the x direction, Fx, is given by
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The force in the y direction normal to the forward motion, Fy, is given by
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Clearly by symmetry the average of Fy over one cycle is zero and this is appropriate for a neutrally buoyant
fish. However, a non-neutrally buoyant fish might require a non-zero lateral force in order to balance its
weight or buoyancy. This can be achieved by adding in an additional constant angle of incidence as we
will do in the context of bird flight in section (Dfe).

The thrust, T , is given by the mean value of Fx averaged over one cycle of the oscillation of the fluke and
therefore
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Before going any further it is evident that the thrust produced by the motion of the fluke is due to the
component of the lift force in the x direction which is positive during the entire fluke cycle (except at
y = ±π/2 where it becomes zero). It is also clear that the drag, D, on the fluke will decrease that
propulsive force.

To evaluate the integral in equation (Dfd8) it remains to specify CL and CDwhich, if we assume that
the oscillatory motions are sufficiently slow that quasisteady coefficients can be used, will be functions
primarily of the local angle of incidence, α∗ = θ − α. For the purposes of this demonstration we will
neglect the drag and assume the lift coefficient is the same as that of a flat plate namely

CL ≈ 2π sinα∗ = 2π sin {θ − α̃ cos ωt} (Dfd10)

which, using the expressions (Dfd3), becomes
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Substituting this into equation (Dfd8) and setting CD = 0 yields
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Note that the dimensionless thrust, T ∗, is a function only of the two dimensionless parameters, ωh/Uand
α̃. If the angle α̃ is small the the above expression may be approximately evaluated as
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Note that T is zero when the transient effective angle of incidence, θ − α̃, is zero and the foil follows
the sinusoidal path without any inclination to it. Note also that, perhaps surprisingly, the thrust takes
the substantial but characteristic value of πω2h2/U2 when α̃ = 0 and the heave motion occurs with zero
inclination of the foil to the direction of motion. Also note that a negative value of α̃ yields an increased
thrust though there will be a limit to this when the maximum transient angle of incidence, θ − α, exceeds
the value at which the foil stalls.

The thrust, T , will be balanced by the drag on the entire fish (or cetacean), DB , so that

T = DB =
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where CDB is the drag coefficient for the entire fish based on an area, AB, which might be conveniently
chosen as the maximum cross-sectional area of the fish normal to the direction of motion. It follows that
the swimming velocity of the animal, U , is given by the solution of T ∗ = CDBAB/AF and this yields
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and, for the characteristic motion in which α̃ = 0 this yields
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Figure 2: Variation of the dimensionless thrust, T/πρcU2, with dimensionless frequency, ωh/U for various α̃ (in radians).

Figure 3: Variation of the dimensionless thrust, T/πρcU2, with the angle, α̃ (in radians).


