An Internet Book on Fluid Dynamics

Solution to Problem 295B

(a) Picture a propeller blade moving through the water while the boat is at rest: The blade is moving through the water at

a velocity, V, and at an angle of attack, α, so it produces lift in the direction of forward propulsion of the boat. The four blades therefore produce a thrust equal to

$$
\text { Thrust }=4 C_{L} s c\left(\frac{1}{2} \rho V^{2}\right)
$$

where C_{L} is the lift coefficient of the blade at the angle of attack α, s is the span of the blade, and c is the chord of the blade. If we assume that $C_{L} \approx 2 \pi \alpha$ then

$$
\text { Thrust }=4 \pi \alpha s c \rho V^{2}
$$

(b) Now consider what changes when the boat is in motion with a forward velocity, U. Then the fluid velocity relative to the blade has two components of velocity, V and U, as shown in the following sketch:

The angle of incidence with which the flow approaches the blade has now changed to $\alpha-(U / V)$ (assuming small angles so that $\left.\tan ^{-1}(U / V) \approx U / V\right)$. Then the modified thrust is

$$
\text { Thrust }=4 \pi(\alpha-(U / V)) s c \rho V^{2}
$$

At cruising speed this must equal the drag on the hull which we can estimate as

$$
\text { Hull Drag }=C_{D} A\left(\frac{1}{2} \rho U^{2}\right)
$$

where A is the hull area on which C_{D} is based. Equating the thrust and the hull drag

$$
4 \pi(\alpha-(U / V)) s c V^{2}=C_{D} A\left(\frac{1}{2} U^{2}\right)
$$

Rearranging the above equation

$$
\frac{C_{D} A}{4 \pi s c}=\alpha \frac{V^{2}}{U^{2}}-\frac{V}{U}
$$

and solving for V / U yields the following expression for the cruising speed:

$$
U=\frac{2 \alpha V}{1+\left[1+\frac{C_{D} A \alpha}{\pi s c}\right]^{\frac{1}{2}}}
$$

