An Internet Book on Fluid Dynamics

Solution to Problem 292D

Since the only forces acting on the glider are the $\operatorname{lift}(L)$, the $\operatorname{drag}(D)$ and the weight (W), these must balance according to the force diagram: where the angle β is the glide angle.

Now the total drag on the glider is composed of drag on the wings and additional drag on the fuselage so that

$$
\tan \beta=\frac{\text { Total Drag }}{\text { Lift }}=\frac{\left(C_{D}\right)_{\text {wings }}+\left(C_{D}\right)_{\text {additional }}}{C_{L}}
$$

Therefore

$$
\tan \beta=\frac{\left(C_{D}\right)_{\text {wings }}+0.02}{C_{L}}
$$

so, if on the graph given in the problem, we draw a line through the point $(-0.02,0)$ which is also tangent to the curve, the

minimum glide angle, β, will be given by the values of C_{L} and C_{D} at the tangent point or

$$
\beta_{\min }=\arctan \left(\frac{0.016+0.02}{1.55}\right)=1.33^{\circ}
$$

