An Internet Book on Fluid Dynamics

Solution to Problem 292C

Find the minimum glide angle for the airplane.
At equilibrium, the lift and drag forces must be balanced by the weight of the airplane.

$$
\Rightarrow \tan \beta=\frac{D_{t o t}}{L_{t o t}}=\frac{\left(C_{D}\right)_{t o t}}{\left(C_{L}\right)_{t o t}}
$$

The total lift coefficient, $\left(C_{L}\right)_{t o t}$, is the 2-D lift coefficient with the correction for finite aspect ratio wings.

$$
\begin{aligned}
\left(C_{L}\right)_{\text {tot }} & =\left(C_{L}\right)_{2 D}+\Delta C_{L} \\
& =\left(C_{L}\right)_{2 D}\left[1-\frac{1}{1+\frac{A_{R}}{2}}\right] \\
& =\left(C_{L}\right)_{2 D}\left[\frac{A_{R}}{2+A_{R}}\right]
\end{aligned}
$$

Since drag on the rest of the airplane is given as four times the drag on the wings, the total drag coefficient, $\left(C_{D}\right)_{t o t}$, is five times the corrected wing drag coefficient.

$$
\left(C_{D}\right)_{t o t}=5\left(C_{D}\right)_{\text {wing }}=5\left[\left(C_{D}\right)_{2 D}+\frac{\left(C_{L}\right)_{2 D}^{2}}{\pi A_{R}}\right]
$$

Substituting these relations for the lift and drag coeffients into the expression for the glide angle, β, we get an equation for the glide angle in terms of the 2-D lift and drag coefficients (which can be read from the given plot) and the aspect ratio.

$$
\tan \beta=\frac{5\left(2+A_{R}\right)}{A_{R}}\left[\frac{\left(C_{D}\right)_{2 D}}{\left(C_{L}\right)_{2 D}}+\frac{\left(C_{L}\right)_{2 D}}{\pi A_{R}}\right]
$$

Note: If there was no ΔC_{D} then we could find the minimum glide angle by simply minimizing $\left(C_{D} / C_{L}\right)_{2 D}$. This could be done by finding the slope of the line through the origin which just touches the curve of C_{L} versus C_{D}. On account of the drag correction, we must solve by trial and error.

$\frac{\left(C_{L}\right)_{2 D}}{1.0}$	$\frac{\left(C_{D}\right)_{2 D}}{0.008}$	$\frac{\tan \beta}{0.239}$	13.44°
0.6	0.0065	0.180	10.18°
0.4	0.0064	0.172	9.78°
0.2	0.0064	0.230	12.96°

So the minimum glide angle is approximately 9.8°.

