An Internet Book on Fluid Dynamics

Solution to Problem 292B

1. From the graph, stall occurs at about $C_{L}=1.72$. For horizontal flight, the lift must be balanced by the weight.

$$
\begin{aligned}
\frac{1}{2} \rho U^{2} A C_{L} & =2000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2} \\
u & =\sqrt{\frac{2\left(2000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}\right)}{\rho A C_{L}}} \\
& =\sqrt{\frac{2\left(2000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}\right)}{\left(1 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(10 \mathrm{~m}^{2}\right)(1.72)}} \\
& =15.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. The glide angle,

$$
\theta=\tan ^{-1}\left(\frac{C_{D}}{C_{L}}\right)
$$

has a minimum met by the conditions at the point where $C_{L}=1.1, C_{D}=0.0093$. Therefore the minimum glide angle is approximately 0.48°. [Note: If the fuselage drag was included, this angle would be much larger.] In gliding,

$$
\begin{aligned}
L & =W \times \cos \theta \\
\frac{1}{2} \rho u_{T}^{2} A C_{L} & =\left(2000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}\right) \cos \left(0.48^{\circ}\right) \\
u_{T} & =19.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

where u_{T} is the total velocity. Therefore, the horizontal velocity is $u_{T} \cos \left(0.48^{\circ}\right)=19.0 \mathrm{~m} / \mathrm{s}$

