An Internet Book on Fluid Dynamics

Solution to Problem 292A

At takeoff:

$$
\begin{aligned}
W & =\frac{1}{2} \rho V^{2} A C_{L} \\
V & =\left(\frac{2 W}{\rho A C_{L}}\right)^{\frac{1}{2}} \\
& =\left(\frac{2\left(3 \times 10^{6} \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}\right)}{\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(550 \mathrm{~m}^{2}\right)(1.6)}\right)^{\frac{1}{2}} \\
& =75.38 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Neglecting drag, $\operatorname{Thrust}(T)=\operatorname{Mass}(M) \times \operatorname{Acceleration}(a)$,then:

$$
\begin{aligned}
a & =\frac{T}{M} \\
& =\frac{4\left(2 \times 10^{5} \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}\right)}{3 \times 10^{6} \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}} \times g \\
& =2.61 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Then, takeoff distance is:

$$
L=\frac{V^{2}}{2 a}=1086 m
$$

$\operatorname{Drag}(\mathrm{D})$ at takeoff is the lift divided by 22 , where the lift is equal to the weight(G). So $D=G / 22=136364 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$. So the net thrust is:

$$
T_{n e t}=\left(8 \times 10^{5}-1.36 \times 10^{5}\right) \mathrm{kg} \mathrm{~m} / \mathrm{s}^{2}=6.64 \times 10^{5} \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}
$$

So, the acceleration is:

$$
a \frac{T_{n e t}}{T}=2.17 \mathrm{~m} / \mathrm{s}^{2}
$$

