An Internet Book on Fluid Dynamics

Solution to Problem 290B

If we assume a circular path, as the problem states, the lift force due to spin must be equal to the centripital force on the baseball.

$$
\rho U \Gamma a=\frac{m U^{2}}{R}
$$

With the given relationship for the circulation, $\Gamma=2 \pi a^{2} \omega$, the radius of the ball's trajectory is:

$$
R=\frac{m U}{2 \pi a^{3} \omega \rho}=\frac{(0.2)(40)}{(2 \pi)(0.03)^{3}(200)(1)}=235.8 \mathrm{~m}
$$

From the geometry:

$$
\begin{gathered}
(R-H)^{2}+L^{2}=R^{2} \\
\Rightarrow H=R-\sqrt{R^{2}-L^{2}}=0.85 m
\end{gathered}
$$

