An Internet Book on Fluid Dynamics

Solution to Problem 280A

If the man and the parachute are descending at a constant (terminal) velocity, U, the man's weight, W, must be equal to the drag on the parachute and since the drag, D, can be written as

$$
D=\frac{1}{2} C_{D} \rho U^{2} A
$$

where ρ is the density of the air, A is the frontal projected area of the parachute and C_{D} is the drag coefficient, it follows that

$$
W=\frac{1}{2} C_{D} \rho U^{2} A
$$

From the tables the drag coefficient can be estimated to be about 1.2 and it follows that the required frontal projected area of the parachute must be

$$
A=\frac{2 W}{C_{D} \rho U^{2}}
$$

or

$$
A=\frac{2 \times 70 \times 9.8}{1.2 \times 1 \times 3^{2}}=127 \mathrm{~m}^{2}
$$

for a diameter of about 12.7 m .

An Internet Book on Fluid Dynamics

Solution to Problem 280A

If the man and the parachute are descending at a constant (terminal) velocity, U, the man's weight, W, must be equal to the drag on the parachute and since the drag, D, can be written as

$$
D=\frac{1}{2} C_{D} \rho U^{2} A
$$

where ρ is the density of the air, A is the frontal projected area of the parachute and C_{D} is the drag coefficient, it follows that

$$
W=\frac{1}{2} C_{D} \rho U^{2} A
$$

From the tables the drag coefficient can be estimated to be about 1.2 and it follows that the required frontal projected area of the parachute must be

$$
A=\frac{2 W}{C_{D} \rho U^{2}}
$$

or

$$
A=\frac{2 \times 70 \times 9.8}{1.2 \times 1 \times 3^{2}}=127 \mathrm{~m}^{2}
$$

for a diameter of about 12.7 m .

An Internet Book on Fluid Dynamics

Solution to Problem 280A

If the man and the parachute are descending at a constant (terminal) velocity, U, the man's weight, W, must be equal to the drag on the parachute and since the drag, D, can be written as

$$
D=\frac{1}{2} C_{D} \rho U^{2} A
$$

where ρ is the density of the air, A is the frontal projected area of the parachute and C_{D} is the drag coefficient, it follows that

$$
W=\frac{1}{2} C_{D} \rho U^{2} A
$$

From the tables the drag coefficient can be estimated to be about 1.2 and it follows that the required frontal projected area of the parachute must be

$$
A=\frac{2 W}{C_{D} \rho U^{2}}
$$

or

$$
A=\frac{2 \times 70 \times 9.8}{1.2 \times 1 \times 3^{2}}=127 \mathrm{~m}^{2}
$$

for a diameter of about 12.7 m .

