An Internet Book on Fluid Dynamics

Solution to Problem 276A

Since

$$
\bar{u}=C u_{\tau}\left(\frac{y}{\epsilon}\right)^{\frac{1}{7}}
$$

and $\bar{u}=U$ at $y=\delta$ it follows that

$$
u_{\tau}=\left(\frac{\tau_{w}}{\rho}\right)^{\frac{1}{2}}=\frac{U}{C}\left(\frac{\epsilon}{\delta}\right)^{\frac{1}{7}}
$$

But the Karman Momentum Integral Equation for a case in which U is independent of x is

$$
\frac{\tau_{w}}{\rho}=\alpha U^{2} \frac{d \delta}{d x}
$$

and elimnating τ_{w} / ρ from the last two equations gives

$$
\frac{d \delta}{d x}=\frac{\epsilon^{\frac{2}{7}}}{\alpha C^{2}} \delta^{-\frac{2}{7}}
$$

which can be integrated to yield (after applying $\delta=0$ at $x=0$)

$$
\delta=\left[\frac{9 \epsilon^{\frac{2}{7}}}{7 \alpha C^{2}} x\right]^{\frac{7}{9}}
$$

