An Internet Book on Fluid Dynamics

Solution to Problem 274A

The pipe has an internal diameter $d=5 \mathrm{~cm}$, flow rate $Q=0.05 \mathrm{~m}^{3} / \mathrm{s}$ and roughness ranging from $\epsilon=0.05 \mathrm{~mm}$ to $\epsilon=1.0 \mathrm{~mm}$. Water has a kinematic viscosity of $\nu=10^{-6} \mathrm{~m}^{s} / \mathrm{s}$ The average velocity of flow through the pipe,

$$
\begin{equation*}
U=\frac{Q}{\pi(d / 2)^{2}}=\frac{0.05 \mathrm{~m}^{3} / \mathrm{s}}{\pi(0.025 \mathrm{~m})^{2}}=25.5 \mathrm{~m} / \mathrm{s} \tag{1}
\end{equation*}
$$

The Reynolds number of the flow is

$$
\begin{equation*}
\operatorname{Re}=\frac{d U}{\nu}=\frac{(0.05 \mathrm{~m})(25.5 \mathrm{~m} / \mathrm{s})}{10^{-6} \mathrm{~m}^{s} / \mathrm{s}}=1.27 \times 10^{6} \tag{2}
\end{equation*}
$$

The relative roughness of the new pipe

$$
\begin{equation*}
\frac{\epsilon}{d}=\frac{5 \times 10^{-5} m}{0.05 m}=0.001 \tag{3}
\end{equation*}
$$

From the Moody friction factor chart at $\frac{\epsilon}{d}=0.001$ and $\operatorname{Re}=1.27 \times 10^{6}$, the friction factor $f=0.02$ The relative roughness of the old pipe

$$
\begin{equation*}
\frac{\epsilon}{d}=\frac{0.001 m}{0.05 m}=0.02 \tag{4}
\end{equation*}
$$

From the Moody friction factor chart at $\frac{\epsilon}{d}=0.02$ and $\operatorname{Re}=1.27 \times 10^{6}$, the friction factor $f \approx 0.048$ Since the pressure difference is linearly related to the friction factor,

$$
\begin{equation*}
\frac{p_{\text {old }}}{p_{\text {new }}}=\frac{0.048}{0.02}=2.4 \tag{5}
\end{equation*}
$$

