An Internet Book on Fluid Dynamics

Solution to Problem 272C:

In this steady flow since the velocities do not change with x it follows that the forces acting on a fluid element of length $d x$ must balance and therefore the net pressure force in the x direction, namely $h(-d p / d x) d x$, must be equal to the frictional forces at the walls, namely $2 \tau_{w} d x$ so that

$$
\begin{equation*}
\tau_{w}=\frac{h}{2}\left(-\frac{d p}{d x}\right) \tag{1}
\end{equation*}
$$

and therefore using the definitions

$$
\begin{equation*}
f=\frac{2 h}{\rho V^{2}}\left(-\frac{d p}{d x}\right) ; u_{\tau}=\sqrt{\tau_{w} / \rho} \tag{2}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\frac{u_{\tau}}{V}=\left(\frac{f}{4}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

The volumetric average velocity, V, is

$$
\begin{equation*}
V=\frac{2}{h} \int_{0}^{h / 2} \bar{u}(y) d y \tag{4}
\end{equation*}
$$

where $\bar{u}(y)$ is the average fluid velocity at a distance y from the midline of the flow (a line of symmetry). Then substituting the universal turbulent velocity profile

$$
\begin{equation*}
\bar{u}(y)=5.75 \log _{10}\left(\frac{y u_{\tau}}{\nu}\right)+5.5 \tag{5}
\end{equation*}
$$

into the above integral and integrating we obtain the following relation connecting the friction factor, f, and the Reynolds number of the flow, $R e=h V / \nu$:

$$
\begin{equation*}
(f)^{-1 / 2}=2.88 \log _{10}\left(f^{1 / 2} R e\right)-0.462 \tag{6}
\end{equation*}
$$

