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Solution to Problem 270E

The shear stress σxy is composed of contributions from the Reynolds shear stress and the laminar viscous stress so that
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or, using Prandtl’s mixing length model with a universal constant, κ:
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But since the shear stress in a cylindrical pipe must vary linearly with the radius
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Therefore the differential equation for u(y) becomes

(
du

dy

)2

+
ν

κ2y2

(
du

dy

)
− τw(R − y)

ρκ2y2R
= 0

or, solving the quadratic for (du/dy),
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We note parenthetically that unless the viscous stress is included the velocity gradient becomes infinite at the wall. However,
we could continue toward a solution for the flow outside the laminar sublayer on the wall by setting μ = 0 to obtain
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This can be integrated to find u(r/R):
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where C is an integration constant determined by matching this result with the velocity at the edge of the laminar sub-layer.


