Solution to Problem 270C

There are two analytical tools available to find the average velocity in this pipe flow. First, the friction factor gives

$$f = \frac{D\left(-\frac{dp}{dx}\right)}{\frac{1}{2}\rho V^2}$$
$$V_f = \sqrt{\frac{D\left(-\frac{dp}{dx}\right)}{\frac{1}{2}\rho f}}$$
$$= \sqrt{\frac{0.5 m\left(\frac{1 \ kg/m \ s^2}{50 \ m}\right)}{\frac{1}{2}(1.2 \ kg/m^3)f}}$$
$$= \sqrt{\frac{1}{60f} \ m/s}$$

Second, the definition of the Reynolds number yields

$$Re = \frac{DV}{\nu}$$

$$V_{Re} = \frac{Re \nu}{D}$$

$$= \frac{2.3 \times 10^{-6} m^2/s}{0.5 m} \text{Re}$$

$$= 4.6 \times 10^{-6} \text{Re } m/s$$

Thus there are two equations and three unknowns $(f, \text{Re}, V = V_f = V_{Re})$. To solve the problem, one must guess either the Reynolds number or the friction factor and then use the Moody chart to iterate toward the correct answer. If we start with a guessed value of the Reynolds number of 6×10^4 , then the Moody chart yields f = 0.02 and the values of V_f and V_{Re} on the first line follow from the equations above. It also flows therefore that the Reynolds number must actually be greater than 6×10^4 and hence the second iteration on the second line. The other iterations then follow until we find a Reynolds number which yields equal values of V_f and V_{Re} as follows:

Iteration	Re	f	$V_f \ (m/s)$	$V_{Re} \ (m/s)$
1	6×10^4	0.02	0.912	0.276
2	2×10^5	0.0155	1.04	0.92
3	$3 imes 10^5$	0.014	1.09	1.38
4	$2.5 imes 10^5$	0.015	1.05	1.15
5	$2.4 imes 10^5$	0.015	1.05	1.104
6	$2.3 imes 10^5$	0.0151	1.047	1.058

Therefore,

$V \simeq 1.05 \text{ m/s}$