An Internet Book on Fluid Dynamics

Solution to Problem 270B

For a pipe of radius R (and diameter D, so that $D=2 R$), the friction factor, f, is defined as

$$
f=\frac{8 \tau_{w}}{\rho V^{2}}
$$

where V is the average velocity through the pipe,

$$
V=\frac{Q}{\pi R^{2}}
$$

where

$$
\begin{aligned}
Q & =2 \pi \int_{0}^{R} \bar{u}(r) r d r \\
& =2 \pi \int_{0}^{R} \bar{u}(y)(R-y) d y
\end{aligned}
$$

is the volume flow rate. Of note is the fact that the velocity profile is given in y, the distance from the outside of the pipe and the radius r is a measure of the distance from the center out. The average velocity is thus

$$
\begin{aligned}
V & =\frac{2}{R^{2}} \int_{0}^{R} \bar{u}(y)(R-y) d y \\
& =\frac{2}{R^{2}} u_{\tau} \int_{0}^{R} u^{*}\left(y^{*}\right)(R-y) d y \\
& =\frac{2}{R^{2}} u_{\tau} \int_{0}^{R} 8.7\left(\frac{u_{\tau} y}{\nu}\right)^{\frac{1}{7}}(R-y) d y \\
& =\frac{(2)(8.7)}{R^{2}} u_{\tau}\left[\frac{7}{8}\left(\frac{u_{\tau}}{\nu}\right)^{\frac{1}{7}} R y^{\frac{8}{7}}-\frac{7}{15}\left(\frac{u_{\tau}}{\nu}\right)^{\frac{1}{7}} y^{\frac{15}{7}}\right]_{0}^{R} \\
& =\frac{(2)(8.7)}{R^{2}} u_{\tau}\left[\frac{49}{120}\left(\frac{u_{\tau}}{\nu}\right)^{\frac{1}{7}} R^{\frac{15}{7}}\right] \\
& =\frac{(2)(8.7)(49)}{120} u_{\tau}\left(\frac{u_{\tau} R}{\nu}\right)^{\frac{1}{7}} \\
& =7.105\left(\frac{R}{\nu}\right)^{\frac{1}{7}} u_{\tau}^{\frac{8}{7}}
\end{aligned}
$$

where

$$
u^{*}=\frac{\bar{u}}{u_{\tau}}=8.7\left(y^{*}\right)^{\frac{1}{7}}=8.7\left(\frac{u_{\tau} y}{\nu}\right)^{\frac{1}{7}}
$$

Substituting $u_{\tau}=\sqrt{\frac{\tau_{w}}{\rho}}$ and $f=\frac{8 \tau_{w}}{\rho V^{2}}$ into the average velocity yields

$$
\begin{aligned}
V & =7.105 \sqrt{\frac{\tau_{w}}{\rho}}\left[\left(\sqrt{\frac{\tau_{w}}{\rho}}\right) \frac{R}{\nu}\right]^{\frac{1}{7}} \\
& =7.105 \sqrt{\frac{f V^{2}}{8}}\left[\left(\sqrt{\frac{f V^{2}}{8}}\right) \frac{R}{\nu}\right]^{\frac{1}{7}} \\
\frac{1}{7.105} & =\sqrt{\frac{f}{8}}\left[\left(\sqrt{\frac{f V^{2}}{8}}\right) \frac{R}{\nu}\right]^{\frac{1}{7}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sqrt{8}}{7.105} & =\sqrt{f}\left[\left(\sqrt{\frac{f}{8}}\right) \frac{V R}{\nu}\right]^{\frac{1}{7}} \\
\frac{\sqrt{8}(8)^{\frac{1}{14}}}{7.105} & =\sqrt{f}\left[(\sqrt{f}) \frac{V D}{2 \nu}\right]^{\frac{1}{7}} \\
\frac{\sqrt{8}(8)^{\frac{1}{14}}(2)^{\frac{1}{7}}}{7.105} & =f^{\frac{8}{14}}\left(\frac{V D}{\nu}\right)^{\frac{1}{7}} \\
f^{\frac{4}{7}} & =\frac{\sqrt{8}(8)^{\frac{1}{14}}(2)^{\frac{1}{7}}}{7.105} \mathrm{Re}^{-\frac{1}{7}} \\
f & \simeq 0.308 \mathrm{Re}^{-\frac{1}{4}}
\end{aligned}
$$

where

$$
\operatorname{Re}=\frac{V D}{\nu}
$$

For $\operatorname{Re}=1 \times 10^{6}$, this equation yields a friction factor for smooth pipes of $f=.00974$ compared to the value given by the graph of $f=0.0117$. Thus the equation under-predicts the friction factor by approximately 18%.

