An Internet Book on Fluid Dynamics

Solution to Problem 255A

Thwaites' method for the prediction of laminar boundary layer separation is based on the parameter, λ, defined as:

$$
\begin{gathered}
\lambda=\frac{\delta_{m}^{2}}{\nu} \frac{d U_{\infty}}{d x} \\
\delta_{m}^{2}=\left(\delta_{m}\right)_{x=0}^{2}+\frac{0.45 \nu}{U_{\infty}^{6}} \int_{0}^{x} U_{\infty}^{5} d x
\end{gathered}
$$

where δ_{m} is the momentum thickness of the boundary layer, $\left(\delta_{m}\right)_{x=0}$ is the momentum thickness at $x=0, U_{\infty}$ is the velocity just outside the boundary layer, ν is the kinematic viscosity and x is the streamwise surface coordinate. From potential flow over a cylinder:

$$
U_{\infty}=2 U \sin \theta=2 U \sin \frac{x}{R}
$$

Proceeding to calculate λ for this case:

$$
\frac{d U_{\infty}}{d x}=\frac{2 U}{R} \cos \frac{x}{R}=\frac{2 U}{R} \cos \theta
$$

and using the input that the momentum thickness at the front stagnation point is zero, $\left.\delta_{m}\right|_{x=0}$ it follows that

$$
\begin{aligned}
\delta_{m}^{2} & =\frac{0.45 \nu}{U_{\infty}^{6}} \int_{0}^{x} U_{\infty}^{5} d x \\
& =\frac{0.45 \nu}{\left(2 U \sin ^{6} \theta\right)} \int_{0}^{\theta}\left(2 U \sin ^{5} \theta\right) R d \theta \\
& =\frac{0.45 \nu R}{2 U \sin ^{6} \theta} \int_{0}^{\theta} \sin \theta\left(1-\cos ^{2} \theta\right) d \theta \\
& =\frac{0.45 \nu R}{2 U \sin ^{6} \theta} \int_{0}^{\theta}\left(-1+2 \cos ^{2} \theta-\cos ^{4} \theta\right) d(\cos \theta) \\
& =\frac{0.45 \nu R}{2 U \sin ^{6} \theta}\left[-\cos \theta+\frac{2}{3} \cos ^{3} \theta-\frac{1}{5} \cos ^{5} \theta\right]_{0}^{\theta} \\
& =\frac{0.45 \nu R}{2 U\left(1-\cos ^{2} \theta\right)^{3}}\left[\frac{8}{15}-\cos \theta+\frac{2}{3} \cos ^{3} \theta-\frac{1}{5} \cos ^{5} \theta\right]
\end{aligned}
$$

and therefore

$$
\lambda=\frac{0.45 \cos \theta}{\left(1-\cos \theta^{2}\right)^{3}}\left[\frac{8}{15}-\cos \theta+\frac{2}{3} \cos ^{3} \theta-\frac{1}{5} \cos ^{5} \theta\right]
$$

Thwaites' criterion is that separation occurs at $\lambda=-0.09$ and therefore the equation that determines the point of separation becomes

$$
0.45\left(\frac{8}{15} y-y^{2}+\frac{2}{3} y^{4}-\frac{1}{5} y^{6}\right)=-0.09\left(1-3 y^{2}+3 y^{4}-y^{6}\right)
$$

where, for convenience, we have used $y=\cos \theta$. Solving for y by iteration or other methods we find

$$
y=-0.2268
$$

and therefore separation is predicted to occur at

$$
\theta_{\text {separation }}=103^{\circ}
$$

Experimentally separation is observed to occur about 84°, considerably earlier. To get closer to this one would need to calculate a more accurate potential flow in which the flow separates at, say, 103° and then recalculate the separation point. In other words one would need to iterate toward a more realistic solution using both a potential flow calculation and a boundary layer calculation.

