An Internet Book on Fluid Dynamics

Solution to Problem 241A

For a wedge flow, the relation between the velocity outside the boundary layer, U, and the distance from the vertex, x, is

$$
U=C x^{m}
$$

where C is a constant and m is related to the half-angle of the wedge, θ, by

$$
\theta=\frac{\pi m}{m+1}
$$

so that

$$
m=\frac{\theta}{\pi-\theta}
$$

Thus for the wedge angles $\pi / 10, \pi / 4$ and $\pi / 2$ it follows that $m_{1}=1 / 9, m_{2}=1 / 3$ and $m_{3}=1$ respectively. To determine the laminar boundary layer thickness, $\delta_{0.99}$, we seek the values of $(2(m+1))^{1 / 2} \eta_{0.99}$ from the graph at which $u / U=0.99$. Then the value of $\delta_{0.99}$ can be calculated from:

$$
\eta_{0.99}=\delta_{0.99}\left(\frac{U}{4 \nu x}\right)^{1 / 2}=\frac{1}{2} \delta_{0.99}\left(\frac{c}{\nu}\right)^{1 / 2} x^{\frac{m-1}{2}}
$$

and $\delta_{0.99}$ is given by:

$$
\delta_{0.99}=2 \eta_{0.99}\left(\frac{v}{c}\right)^{1 / 2} x^{\frac{1-m}{2}}
$$

α	m	$(2(m+1))^{1 / 2} \eta_{0.99}$	$\eta_{0.99}$	$\delta_{0.99}$
$\pi / 10$	$1 / 9$	3.2	2.15	$4.3\left(\frac{v}{c}\right)^{1 / 2} x^{4 / 9}$
$\pi / 4$	$1 / 3$	2.9	1.78	$3.6\left(\frac{v}{c}\right)^{1 / 2} x^{1 / 3}$
$\pi / 2$	1	2.4	1.2	$2.4\left(\frac{v}{c}\right)^{1 / 2}$

