An Internet Book on Fluid Dynamics

Solution to Problem 230A

Continuity:

$$
\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}+\frac{\partial(\rho w)}{\partial z}=0
$$

Since the flow is planar and incompressible this simplifies to:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
$$

Since the velocity, v, normal to the plate is zero everywhere in the flow it follows from continuity that

$$
\frac{\partial u}{\partial x}=0
$$

so u is only a function of $y, u=u(y)$.

Navier-Stokes:

x-direction:

$$
\rho\left[\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right]=-\frac{\partial p}{\partial x}+\mu\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right]
$$

Since the flow is planar, since $v=0$ and $\frac{\partial u}{\partial x}=0$, and since the pressure is constant, this becomes:

$$
\rho \frac{\partial u}{\partial t}=\mu \frac{d^{2} u}{d y^{2}}
$$

We use separation of variables to solve this partial differential equation. Assume

$$
u(y, t)=Y(y) T(t)
$$

Substituting this into the partial differential equation and rearranging, the result can be written as a term which is a function only of y equal to a term which is a function only of t. It follows that both must be equal to a simple constant, λ :

$$
\frac{1}{T} \frac{d T}{d t}=\frac{\mu}{\rho} \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=\lambda
$$

The equation for t is then:

$$
\frac{d T}{d t}=\lambda T
$$

and the solution to this is:

$$
T(t)=c_{1} e^{\lambda t}
$$

The equation for y is:

$$
\frac{d^{2} Y}{d y^{2}}-\frac{\rho}{\mu} Y=0
$$

and the solution to this is:

$$
Y(y)=c_{2} e^{\sqrt{\rho \lambda / \mu} y}+c_{3} e^{-\sqrt{\rho \lambda / \mu} y}
$$

The boundary conditions at the plate and as $y \rightarrow \infty$ are respectively

$$
u(0, t)=U(t)=U e^{k t}
$$

and

$$
u(y \rightarrow \infty, t)=0
$$

The second condition yields $c_{2}=0$. It follows that the solution for $u(y, t)$ is:

$$
u(y, t)=c_{4} e^{-\sqrt{\rho \lambda / \mu} y} e^{\lambda t}
$$

where $c_{4}=c_{1} c_{3}$. Applying the no-slip boundary condition at the surface of the plate:

$$
u(0, t)=c_{4} e^{\lambda t}=U e^{k t}
$$

so the values of the unknown constant $c_{4}=U$ and $\lambda=k$ are now determined. This yields a velocity profile:

$$
u(y, t)=U e^{k t} e^{-\sqrt{k / \nu} y}
$$

where ν is the kinematic viscosity $\nu=\mu / \rho$. The vorticity, $\omega(y, t)$, is given by

$$
\begin{aligned}
& \omega(\mathbf{y}, \mathbf{t})=\nabla \times \mathbf{u}=-\frac{\partial u}{\partial y} \\
& \omega=U \sqrt{\frac{k}{\nu}} e^{k t} e^{-\sqrt{\rho k / \mu} y}
\end{aligned}
$$

The boundary layer thickness, δ, is defined as that distance from the plate where the velocity is 10% of the plate velocity:

$$
\begin{aligned}
0.1 U e^{k t} & =U e^{k t} e^{-\sqrt{k / \nu} \delta} \\
0.1 & =e^{-\sqrt{k / \nu} \delta} \\
\delta & =\ln (10) \sqrt{\frac{\nu}{k}}
\end{aligned}
$$

