An Internet Book on Fluid Dynamics

Solution to Problem 225B:

The low pressure liquid oxygen pump in the Space Shuttle Main Engine is designed to deliver $887 \mathrm{lbs} / \mathrm{s}$ ($Q=16.1 \mathrm{ft}^{3} / \mathrm{s}$) of liquid oxygen (assuming a liquid oxygen density of $55 \mathrm{lbs} / \mathrm{ft}^{3}$ and a pressure rise of $310 \mathrm{psi}(H=812 \mathrm{ft})$ at a rotating speed of $5000 \mathrm{rpm}(\Omega=524 \mathrm{rad} / \mathrm{s}$.

The specific speed of this pump is

$$
\begin{equation*}
N=\frac{\Omega Q^{\frac{1}{2}}}{(g H)^{\frac{3}{4}}}=1.02 \tag{1}
\end{equation*}
$$

This would suggest an axial or mixed flow pump.
With an inlet tip diameter of $11 \mathrm{in}\left(r_{T 1}=0.458 \mathrm{ft}\right)$ it follows that the tip speed at 5000 rpm would be $240 \mathrm{ft} / \mathrm{s}$ and the flow coefficient, ϕ, would be

$$
\begin{equation*}
\phi=\frac{Q}{\pi \Omega r_{T 1}^{3}}=0.1 \tag{2}
\end{equation*}
$$

and this would suggest an inlet blade tip angle of

$$
\begin{equation*}
\arctan \phi=5.71^{\circ} \tag{3}
\end{equation*}
$$

Using the simple one-dimensional performance analysis (neglecting frictional losses), the head coefficient is given by

$$
\begin{equation*}
\psi=\frac{g \Delta H}{\Omega^{2} r_{T 1}^{2}}=0.453=1-\phi \cot \left(\beta_{2}\right) \tag{4}
\end{equation*}
$$

where β_{2} is the flow and blade angle at discharge and assuming $\alpha_{1}=0$. From this it follows that the blade angle at discharge

$$
\begin{equation*}
\beta_{2}=\arctan \left(\frac{\phi}{(1-\psi)}\right)=10.5^{\circ} \tag{5}
\end{equation*}
$$

