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Solution to Problem 225A

This problem requires analysis of the two-stage turbine consisting of a rotor followed by a stator followed
by a second rotor: It is to be assumed that all the angles α and β are sufficiently small so that cosα and
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cos β can be approximated by unity. It is also assumed that frictional effects in both the rotors and the
stator can be included using the same constant, C , for all three rows of blades where C is defined as follows:
Relative velocity leaving blades = −C× Relative velocity entering blades. We will denote the absolute
and relative velocities in the direction of u by v and w respectively and use the subscripts 1 through 6 to
denote conditions, respectively, at the inlet to the first rotor, discharge from the first rotor, inlet to the
stator, discharge from the stator, inlet to the second rotor and discharge from the second rotor. We will
also denote the mass flow rate through all stages in a direction perpendicular to u by Ṁ .

First Rotor: In order to use the steady flow version of the momentum theorem we must utilize a control
volume around the first rotor which is moving with the first rotor at the velocity u. Then the velocities
relative to that control volume in the u direction are approximately:

v1 = V and w1 = V − u and w2 = −Cw1 = −C(V − u)

The net momentum flux in the u direction exiting the first rotor is therefore

Ṁ(w2 − w1) = −Ṁ(V − u)(1 + C)

and this must be equal to the force on the fluid in the u direction within the first rotor. Consequently the
force on the first rotor in the u direction, FR1, is

FR1 = Ṁ (V − u)(1 + C)

[Note that if this was the only stage in a single-rotor turbine, then the “blade efficiency”, η1rotor, of that
single rotor impulse turbine, defined as the ratio of the power transmitted to the rotor, FR1u, to the



available energy in the incoming flow, ṀV 2/2, would be
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For a value of C equal to 0.9 this becomes
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and we use these results below to compare turbines with various numbers of rotors.]

Stator: It follows that the velocities relative to the stator at inlet to and discharge from that stage in the
u direction are approximately:

w3 = v3 = w2 + u = u(1 + C)− CV and w4 = v4 = −Cv3 = C2V − uC(1 + C)

Second Rotor: In order to use the steady flow version of the momentum theorem we must utilize a
control volume around the second rotor which is moving with the second rotor at the velocity u. Then the
velocities relative to that control volume in the u direction are approximately:

w5 = v4 − u = −Cv3 = C2V − u(1 + C + C2) and w6 = −Cw5 = −C3V + uC(1 + C + C2)

The net momentum flux in the u direction exiting the second rotor is therefore

Ṁ (w6 − w5) = −Ṁ [V C2(1 + C)− u(1 + 2C + 2C2 + C3)]

and this must be equal to the force on the fluid in the u direction within the second rotor. Consequently
the force on the second rotor in the u direction, FR2, is

FR2 = Ṁ [V C2(1 + C) − u(1 + 2C + 2C2 + C3)]

Adding FR1 and FR2 the total force, FR, on the rotors in the u direction is therefore

FR = Ṁ [V C2(1 + C) − u(1 + 2C + 2C2 + C3) + (V − u)(1 + C)]

FR = Ṁ [V (1 + C + C2 + C3) − u(2 + 3C + 2C2 + C3)]

Consequently the power, P , transmitted to the rotor is P = FRu. The “blade efficiency”, η2rotor, is defined
as the ratio of this power to the available energy in the incoming flow prior to the first stage namely ṀV 2/2
so that the blade efficiency in this case is given by
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For example for a value of C equal to 0.9 this becomes
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To evaluate a third stage we first need the velocities relative to a second stator which become:

w7 = v7 = w6 +u = −C3V +u[1+C+C2+C3] and w8 = v8 = −Cv7 = C4V −uC [1+C+C2 +C3]



Then the velocities relative to the third rotor become:

w9 = v8−u = C4V −u[1+C+C2+C3+C4] and w10 = −Cw9 = −C5V +uC [1+C+C2+C3+C4]

so that the net momentum flux in the u direction exiting the third rotor is

Ṁ (w10 − w9) = −Ṁ [V C2(1 + C)− u(1 + 2C + 2C2 + C3)]

and this must be equal to the force on the fluid in the u direction within the second rotor. Consequently
the force on the third rotor in the u direction, FR3, is

FR3 = Ṁ [V C4(1 + C)− u(1 + 2C + 2C2 + 2C3 + 2C4 + C5)]

and the total force on a three stage rotor becomes

FR = Ṁ [V (1 + C + C2 + C3 + C4 + C5) − u(3 + 5C + 4C2 + 3C3 + 2C4 + C5)]

and the blade efficiency for a three stage impulse turbine, η3rotor, becomes
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which, for a value of C equal to 0.9, becomes
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Comparing the one, two and three rotor turbine blade efficiencies, for example for u/V = 0.1 we find
η1rotor = 0.342, η2rotor = 0.511, and η3rotor = 0.642 and therefore the blade efficiciences increase as more
rotors extract more energy from the flow.

A more appropriate comparison would be to examine the maximum blade efficiencies for each of these
turbines. For this purpose we differentiate the expressions for η1rotor, η2rotor, and η3rotor with respect to
u/V and then set those expressions to zero to find the values of u/V at which the blade efficiencies are a
maxiumum. Then we evaluate the blade efficiencies at those values of u/V . In the case of C = 0.9 this
leads to the following results:

(u/V )max ηmax

One Rotor 0.500 0.95
Two Rotors 0.236 0.766
Three Rotors 0.158 0.742

Consequently the lighter the load on the turbine (the larger the value of u/V ) the fewer the number of
stages needed and the higher the blade efficiency. On the other hand for larger loads and lower u/V the
greater the number of stages needed to extract the energy from the inlet flow.


