An Internet Book on Fluid Dynamics

Solution to Problem 220H:

The following device, known as a Venturi meter, is used to measure the flow rate of water in a pipe of cross-sectional area A_{0}. A convergent/divergent nozzle with a throat area A_{T} is installed in the pipe: and

pressure taps are located upstream of the nozzle and at the throat; these are connected to a water/mercury manometer as shown. When the water is flowing through the device, the manometer levels differ by an elevation, h.

Continuity requires that

$$
\begin{equation*}
U A_{0}=U_{T} A_{T} \quad \text { so that } \quad U_{T}=U \frac{A_{0}}{A_{T}} \tag{1}
\end{equation*}
$$

and Bernoulli's equation requires that

$$
\begin{equation*}
p_{T}-p_{0}=\frac{\rho_{W}}{2} U^{2}\left[1-\frac{A_{0}^{2}}{A_{T}^{2}}\right] \tag{2}
\end{equation*}
$$

where p_{T} and p_{0} are the pressures in the throat and far upstream. Therefore

$$
\begin{equation*}
U=\left[\frac{2 A_{T}^{2}\left(p_{0}-p_{T}\right)}{\rho_{W}\left(A_{0}^{2}-A_{T}^{2}\right)}\right]^{1 / 2} \tag{3}
\end{equation*}
$$

The manometer will read

$$
\begin{equation*}
p_{0}-p_{T}=\left(\rho_{M}-\rho_{W}\right) g h \tag{4}
\end{equation*}
$$

and therefore the flow rate, Q, can be determined using

$$
\begin{equation*}
Q=U A_{0}=\left[\frac{2 g h A_{T}^{2} A_{0}^{2}\left(\rho_{M}-\rho_{W}\right)}{\rho_{W}\left(A_{0}^{2}-A_{T}^{2}\right)}\right]^{1 / 2} \tag{5}
\end{equation*}
$$

