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Solution to Problem 220F:

To analyze the details of this phenomena it is most useful to do so in a frame of reference fixed in the
jump as shown in the above figure. In this frame of reference, the depth-averaged velocities upstream and
downstream of the jump are denoted by u1 and u2 respectively and the upstream and downstream depths
are denoted by h1 and h2. Then we apply the equations of conservation of mass and the linear momentum
theorem to a control volume consisting of the upstream and downstream boundaries shown in the figure
that extend far above the liquid and the solid boundary at the base of the flow.

Then, assuming for simplicity that the breadth of the flow normal to the sketch is unity, conservation of
mass for this flow which is steady in the frame of reference chosen requires that

u1h1 = u2h2 = Q (1)

where Q is used to denote the volume flow rate (per unit breadth). To apply the linear momentum theorem
in the direction of flow we note that the hydrostatic force on the upstream boundary is ρgh2

1/2 (where g is
the acceleration due to gravity and ρ is the liquid density assumed constant) while that on the left side is
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forces that may act at the solid boundary. The momentum flux in through the left hand boundary is ρu2
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and out through the right-hand boundary is ρu2
2h2. Consequently the linear momentum theorem yields
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which can be written as
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Therefore either h1 = h2 and there is no jump at all or
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which is a quadratic in h2 and whose solution is
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Clearly the only realistic choice is the positive sign and so the downstream depth must be given by
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This relation between the upstream and downstream depths (or between the upstream and downstream
velocities since h2/h1 = u1/u2) can be written in non-dimensional terms using Fr1 = u1/(gh1)
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To evaluate the energy losses in the flow through a hydraulic jump consider a streamtube through the
jump as exemplified by that shown in the following figure: If we denote the atmospheric pressure above

the free surface by pA, then the static pressure, p1, in the tube that enters the jump at an elevation of αh1

(0 < α < 1) will be pA + (1 − α)ρgh1 and therefore the total pressure, pT
1 , will be
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using the solid boundary as the elevation reference level. Similarly the total pressure in the streamtube
downstream of the jump will be
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so the total pressure drop in the stream tube as it passes through the hydraulic jump will be
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and is the same for any streamtube since it is independent of the chosen location, α. Using Q = u1h1 = u2h2

and the above expression for Q this may be written as
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and therefore the energy loss in the hydraulic jump per unit breadth, Ẇ = (pT
1 − pT

2 )Q, is given by
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This dimensionless energy loss demonstrates the dramatic rise in the energy loss as the magnitude of the
jump increases. In most practical circumstances this energy loss manifests itself as massive turbulence and
mixing within the jump though very small scale jumps can be quite smooth as the energy is dissipated by
viscous effects within the jump.

It is evident from the above relations



• that h2 must always be greater than h1.

• The upstream Froude number is always greater than unity.

• The downstream Froude number is always less than one, so that just like a shock wave in a compressible
fluid in which the upstream flow relative to the shock is always supersonic and the downstream flow
relative to the shock is always subsonic, in a hydraulic jump the upstream flow relative to the jump
is always supercritical whereas the downstream flow relative to the jump is always subcritical.

• There is always a dissipation of kinetic energy within the hydraulic jump just as there is a dissipation
of kinetic energy in a compressible fluid shock wave. This dissipation of energy occurs through the
viscous dissipation and turbulence that always takes place within a hydraulic jump.


