Solution to Problem 210D:

A pump has the following non-dimensional characteristic, $\psi(\phi)$: where from their definitions:

$$
\begin{equation*}
\phi=\frac{Q}{A \Omega R} ; \psi=\frac{g \Delta H}{\Omega^{2} R^{2}} \tag{1}
\end{equation*}
$$

where Q is the flow rate, Ω is the pump speed (1000 rpm), R is the impeller radius (15 cm), A is the pump discharge area $\left(300 \mathrm{~cm}^{2}\right), \Delta H$ is the head rise across the pump and g is the acceleration due to gravity.

The pump is used to pump water from one tall tank or reservoir to another: beginning with the two

reservoirs levels at the same elevation. The cross-sectional area of the surface of both reservoirs is the same. The pipes connecting the reservoirs to the pump both have an internal diameter of 10 cm and a length of 50 m ; the appropriate friction factor, f, for the flow in these pipes is 0.05 .

The head loss in the pipes, δH_{L}, is given by

$$
\begin{equation*}
\Delta H_{L}=\frac{f}{2 g} \frac{L}{D}\left(\frac{Q}{A_{P}}\right)^{2} \tag{2}
\end{equation*}
$$

where A_{P} is the cross-sectional area of the pipes $\left(0.03 \mathrm{~m}^{2}\right)$ and f is the friction factor (0.05). Therefore teh resistance, R, of the piping into the pump and of the piping from the pump is given by

$$
\begin{equation*}
R=\frac{g}{Q} \Delta H_{L}=\frac{f L}{2 D} \frac{Q}{A_{P}^{2}}=2.026 \times 10^{5} Q \tag{3}
\end{equation*}
$$

The resistance of the pump, R_{P}, is given by $-g d H / d Q$ where

$$
\begin{equation*}
R_{P}=-g \frac{d H}{d Q} \tag{4}
\end{equation*}
$$

and since

$$
\begin{gather*}
H=\frac{\Omega^{2} R^{2}}{g}\left[0.5-8\left(\frac{Q}{A R \Omega}-0.04\right)^{2}\right] \tag{5}\\
R_{P}=-\Omega R\left[-\frac{16}{A \Omega R}\left(\frac{Q}{A R \Omega}-0.04\right)\right]=\frac{16 Q}{A}-\frac{0.04 R \Omega}{A} \tag{6}
\end{gather*}
$$

As the head across the pump increases and the flow rate decreases the system will encounter instability when R_{P} becomes equal to the pipeline resistance, $2 R_{L}$, or

$$
\begin{equation*}
R_{P}=\frac{16 Q}{A}-\frac{0.04 R \Omega}{A}=2 R=\frac{2 f L}{2 D} \frac{Q}{A_{P}^{2}} \tag{7}
\end{equation*}
$$

Solving for Q this yields

$$
\begin{equation*}
Q_{i n s t a b i l i t y}=\frac{0.04 R \Omega}{A}\left[\frac{16}{A}-\frac{f L}{D A_{P}^{2}}\right]^{-1} \tag{8}
\end{equation*}
$$

Substituting the applicable parameters, this yields an instability flow coefficient, ϕ, of 0.00168 and therefore an instability head coefficient, ψ, of 0.488 . This, in turn, yields an instability head rise of 12.29 m . And this would occur when the difference in the reservoir levels reached 12.27 m .

