An Internet Book on Fluid Dynamics

Solution to Problem 210A:

The flow in the pipeline will be governed by the unsteady Bernoulli equation so that

$$
\begin{equation*}
g \Delta H=\rho \frac{l}{A} \frac{d Q}{d t}+\frac{\rho k}{2}\left(\frac{Q}{A}\right)^{2} \tag{1}
\end{equation*}
$$

where ΔH is the head rise across the pump and the head loss in the pipeline, Q is the volume flow rate through the pipeline, A is the cross-sectional area of the pipeline, k is the loss coefficient for the pipeline, ρ is the fluid density, t is time and g is the acceleration due to gravity. With $k=f L / D$ (f is the friction factor and L and D are the length and diameter of the pipe) this can be written as

$$
\begin{equation*}
\Delta H=C_{1} \frac{d Q}{d t}+C_{2} Q^{2} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{1}=\frac{L}{g A}=24336 \mathrm{~s}^{2} / \mathrm{m}^{2} \quad \text { and } \quad C_{2}=\frac{f L}{2 g D A^{2}}=4841 \mathrm{~s}^{2} / \mathrm{m}^{5} \tag{3}
\end{equation*}
$$

Question (i): At $Q=0, \Delta H=C_{1} d Q / d t$ therefore

- Pump(a)

$$
\begin{equation*}
\frac{d Q}{d t}=\frac{\Delta H}{C_{1}}=\frac{200}{24336}=0.0082 \mathrm{~m}^{3} / \mathrm{s}^{2} \tag{4}
\end{equation*}
$$

- Pump(b)

$$
\begin{equation*}
\frac{d Q}{d t}=\frac{\Delta H}{C_{1}}=\frac{(200-1000 Q}{24336}=0.0082 \mathrm{~m}^{3} / \mathrm{s}^{2} \text { since } \mathrm{Q}=0 \tag{5}
\end{equation*}
$$

Question (ii): The asymptotic flow rate, $Q(\infty)$:

- Pump(a)

$$
\begin{equation*}
Q(\infty)=\left(\frac{\Delta H}{C_{2}}\right)^{1 / 2}=\left(\frac{200}{4841}\right)^{0.5}=0.203 \mathrm{~m}^{3} / \mathrm{s} \tag{6}
\end{equation*}
$$

- Pump(b): Need to solve the quadratic equation

$$
\begin{equation*}
\Delta H=200-1000 Q=C_{2} Q^{2} \tag{7}
\end{equation*}
$$

which yields $Q(\infty)=0.125 \mathrm{~m}^{3} / \mathrm{s}$
Question (iii): To find $Q(t)$: The following equation applies:

$$
\begin{equation*}
\Delta H=C_{1} \frac{d Q}{d t}+C_{2} Q^{2} \tag{8}
\end{equation*}
$$

and therefore the integral that must be evaluated to determine $Q(t)$ is

$$
\begin{equation*}
t=\int_{0}^{Q} \frac{C_{1}}{\Delta H-C_{2} q^{2}} d q \tag{9}
\end{equation*}
$$

where q is a dummy variable.

- Pump(a): For pump(a) this becomes

$$
\begin{equation*}
t=\int_{0}^{Q} \frac{C_{1}}{200-C_{2} q^{2}} d q \tag{10}
\end{equation*}
$$

- Pump(a): For pump(b) this becomes

$$
\begin{equation*}
t=\int_{0}^{Q} \frac{C_{1}}{200-1000 q-C_{2} q^{2}} d q \tag{11}
\end{equation*}
$$

These may require numerical integration.

