## An Internet Book on Fluid Dynamics

## Solution to Problem 206A

The U-tube shown in the figure has one side of length, $L$, and cross-sectional area, $A$, and the other side with the same length but a cross-sectional area, $2 A$ :


Assume no friction within the pipe and an incompressible fluid. During the oscillation, assume the level of the fluid in the left hand side of the tube (point (1)) rises a distance $y_{1}=x$. Because of volume conservation, the level at the right-hand side (point (3)) will drop to a level $y_{2}=-x / 2$. The velocity and acceleration on the left hand side (denoted as positive in the direction from point (3) to point (1)) are $u_{1}=d x / d t$ and $a_{1}=d^{2} x / d t^{2}$ while these quantities on the right hand side are $u_{2}=0.5 d x / d t$ and $a_{2}=0.5 d^{2} x / d t^{2}$.

Denote the point where the area changes abruptly as point (2). Then the total pressure difference $P_{1}-P_{3}$ can be determined by applying the unsteady Bernoulli equation twice between point (1) and point (2) and between point (3) and point (2):

$$
P_{2}-P_{1}=\rho L \frac{d u_{1}}{d t}=\rho L \frac{d^{2} x}{d t^{2}}
$$

and

$$
P_{3}-P_{2}=\rho L \frac{d u_{2}}{d t}=\frac{1}{2} \rho L \frac{d^{2} x}{d t^{2}}
$$

Adding the two equations gives:

$$
\begin{equation*}
P_{3}-P_{1}=\frac{3}{2} \rho L \frac{d^{2} x}{d t^{2}} \tag{1}
\end{equation*}
$$

But also by definition the difference between the total pressures at points (1) and (2) is

$$
P_{1}-P_{3}=\left(p_{a}+\frac{1}{2} \rho u_{1}^{2}+\rho g y_{1}\right)-\left(p_{a}+\frac{1}{2} \rho u_{3}^{2}+\rho g y_{3}\right)
$$

For small amplitudes of motion the kinetic energy terms involving $0.5 \rho u_{1}^{2}$ and $0.5 \rho u_{3}^{2}$ are negligible and since $y_{1}=x$ and $y_{3}=-x / 2$ it follows that:

$$
\begin{equation*}
P_{1}-P_{3}=\frac{3}{2} \rho g x \tag{2}
\end{equation*}
$$

Hence

$$
\frac{d^{2} x}{d t^{2}}+\frac{g}{L} x=0
$$

which is similar to a pendulum. The natural frequency of the oscillation inside the tube is therefore:

$$
\omega=\sqrt{\frac{g}{L}}
$$

