Solution to Problem 205F:

The definitions of the head coefficient, ψ , and the flow coefficient, ϕ , are

$$\psi = gH/R^2\Omega^2$$
 and $\phi = Q/(A\Omega R)$ (1)

where H is the head rise in meters, Q is the volume flow rate, A is the cross-sectional area $(A = \pi R^2)$ and ΩR is the velocity of the tips of the blades where Ω is the rotational speed (in radians/second) and R is the impeller radius.

Therefore with the values given

$$0.2 = \frac{9.8 \times 10}{R^2 \Omega^2}$$
 and $0.08 = \frac{0.1}{\pi \Omega R^3}$ (2)

or

$$\Omega^2 R^2 = 490$$
 and $\Omega R^3 = 0.398$ (3)

Solving for R:

$$R = (0.398^2/490)^{1/4} = 0.134m = 13.4cm \tag{4}$$

and for Ω :

$$\Omega = 165.2 radians/sec = 1578 rpm \tag{5}$$