An Internet Book on Fluid Dynamics

Solution to Problem 205A

The flow coefficient, ϕ, and the head coefficient, ψ, are defined as:

$$
\phi=\frac{Q}{\pi N R^{3}} \quad \text { and } \quad \psi=\frac{\Delta P}{\rho N^{2} R^{2}}
$$

The pump designer is given required values for the flow rate, Q, and the total pressure rise, ΔP and also has desired values for ϕ_{D} and ψ_{D} :

$$
\phi_{D}=\frac{Q}{\pi N R^{3}} \quad \text { and } \quad \psi_{D}=\frac{\Delta P}{\rho N^{2} R^{2}}
$$

The two unknowns in these two relations are the size of the pump R and the rotating speed N. By manipulating the equations, these parameters can be expressed in terms of the known variables. Thus:

$$
N R^{3}=\frac{Q}{\pi \phi_{D}}
$$

and

$$
N^{2} R^{2}=\frac{\Delta P}{\rho \psi_{D}}
$$

Eliminating N from these two equations yields

$$
R^{4}=\frac{\frac{Q^{2}}{\pi^{2} \phi_{D}^{2}}}{\frac{\Delta P}{\rho \psi_{D}}}
$$

and therefore

$$
R=\left(\frac{Q}{\pi \phi_{D}}\right)^{\frac{1}{2}}\left(\frac{\rho \psi_{D}}{\Delta P}\right)^{\frac{1}{4}}
$$

In addition, eliminating R yields:

$$
N\left(\frac{Q}{\pi \phi_{D}}\right)^{\frac{3}{2}}\left(\frac{\rho \psi_{D}}{\Delta P}\right)^{\frac{3}{4}}=\frac{Q}{\pi \phi_{D}}
$$

and thus

$$
N=\left(\frac{\pi \phi_{D}}{Q}\right)^{\frac{1}{2}}\left(\frac{\Delta P}{\rho \psi_{D}}\right)^{\frac{3}{4}}
$$

