Solution to Problem 204C

Velocity of the flow in the piping $=V / T A^{*}$
Total head loss in the piping $=\frac{k \rho}{2}\left\{\frac{V}{T A^{*}}\right\}^{2} / \rho g$
Therefore the pump head rise must be $=H$ plus $\frac{k}{2 g}\left\{\frac{V}{T A^{*}}\right\}^{2}$
Therefore the rate of work done by the pump on the fluid

$$
\begin{aligned}
& =\rho g \times \text { Volume Flow Rate } \times \text { Total Head Rise } \\
& =\rho g \times \frac{V}{T} \times\left[H+\frac{k \rho}{2 g}\left\{\frac{V}{T A^{*}}\right\}^{2}\right] \\
& =\frac{\rho g V}{T}\left[H+\frac{k \rho}{2 g}\left\{\frac{V}{T A^{*}}\right\}^{2}\right]
\end{aligned}
$$

Therefore the work done by the pump on the fluid $=\rho g V\left[H+\frac{k \rho}{2 g}\left\{\frac{V}{T A^{*}}\right\}^{2}\right]$
Therefore the work input to the pump shaft $=\frac{\rho g V}{\eta}\left[H+\frac{k \rho}{2 g}\left\{\frac{V}{T A^{*}}\right\}^{2}\right]$

