An Internet Book on Fluid Dynamics

Solution to Problem 160D

Consider the volume flow rate for a stage with n tubes:

$$
Q=n A_{n} \bar{u}_{n}
$$

From the solution for laminar Poiseuille flow it follows that:

$$
\bar{u}=\frac{R^{2}}{8 \mu}\left(\frac{\partial p}{\partial x}\right)
$$

and therefore,

$$
A_{1} \frac{R_{1}^{2}}{8 \mu}\left(\frac{\partial p}{\partial x}\right)=n A_{n} \frac{R_{n}^{2}}{8 \mu}\left(\frac{\partial p}{\partial x}\right)
$$

Since,

$$
A_{n}=\pi R_{n}^{2}
$$

it follows that

$$
A_{1}^{2}=n A_{n}^{2}
$$

and therefore the desired relation between A_{n} and n is

$$
A_{n}=\frac{A_{1}}{\sqrt{n}}
$$

From the continuity relation

$$
A_{1} \bar{u}_{1}=n A_{n} \bar{u}_{n}
$$

and therefore the desired relation between the velocity and n is

$$
\bar{u}_{n}=\frac{\bar{u}_{1}}{\sqrt{n}}
$$

Using the numerical values given

$$
\pi(0.015)^{2}=\frac{\pi\left(4 \times 10^{-6}\right)^{2}}{\sqrt{n}}
$$

and hence

$$
n=1.98 \times 10^{14}
$$

The actual number is much smaller than this, which implies that the velocity (and therefore, the pressure drop) is greater in the microcirculation stages.

