An Internet Book on Fluid Dynamics

Solution to Problem 160C:

The equilibrium equations (the equations of motion in terms of the stresses) yield (for $y>0$):

$$
\begin{align*}
\rho \frac{D u}{D t} & =\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}=-\frac{\partial p}{\partial x}-\frac{\partial}{\partial y}\left\{c\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)^{2}\right\} \tag{1}\\
\rho \frac{D v}{D t} & =\frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}=-\frac{\partial p}{\partial y}-\frac{\partial}{\partial x}\left\{c\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)^{2}\right\} \tag{2}
\end{align*}
$$

Since the flow is planar and fully developed $v=0$ and $\partial u / \partial x=0$ and it follows from the second equation above that $\partial p / \partial y=0$. Therefore p is a function only of x and the quantity $-d p / d x$ may be regarded as the imposed pressure gradient. It also follows from the first equation that

$$
\begin{equation*}
\frac{\partial}{\partial y}\left\{\left(\frac{\partial u}{\partial y}\right)^{2}\right\}=-\frac{1}{c} \frac{\partial p}{\partial x}=\frac{1}{c}\left(-\frac{d p}{d x}\right) \tag{3}
\end{equation*}
$$

and since u is a function only of y we may integrate this relation and use the boundary conditions (1) that $\partial u / \partial y=0$ on $y=0$ and (2) that $u=0$ on $y=h / 2$ to obtain

$$
\begin{equation*}
u=\frac{2}{3}\left\{\left(\frac{h}{2}\right)^{3 / 2}-y^{3 / 2}\right\}\left\{\frac{1}{c}\left(-\frac{d p}{d x}\right)\right\}^{1 / 2} \tag{4}
\end{equation*}
$$

The mean velocity, \bar{u}, is

$$
\begin{equation*}
\bar{u}=\frac{2}{h} \int_{0}^{h / 2} u d y=\frac{2}{5}\left(\frac{h}{2}\right)^{3 / 2}\left\{\frac{1}{c}\left(-\frac{d p}{d x}\right)\right\}^{1 / 2} \tag{5}
\end{equation*}
$$

