An Internet Book on Fluid Dynamics

Solution to Problem 150O:

The Navier-Stokes equations under the conditions given reduce to a single equation of motion in the direction parallel to the plate:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\nu \frac{\partial^{2} u}{\partial y^{2}} \tag{1}
\end{equation*}
$$

for the velocity, $u(y, t)$, parallel to the plate where y is the distance normal to the plate.
We will seek a solution by separation of variables in which $u=Y(y) T(t)$. Then

$$
\begin{equation*}
Y \frac{d T}{d t}=\nu T \frac{d^{2} Y}{d y^{2}} \quad \text { or } \quad \frac{1}{T} \frac{d T}{d t}=\frac{\nu}{Y} \frac{d^{2} Y}{d y^{2}}=\lambda=\text { constant } \tag{2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
T=A e^{\lambda t} \quad \text { and } \quad Y=B e^{y \sqrt{\lambda / \nu}}+C e^{-y \sqrt{\lambda / \nu}} \tag{3}
\end{equation*}
$$

where A, B and C are constants. But B must be zero for the velocity far some the plate to tend to zero and therefore

$$
\begin{equation*}
u=D e^{\lambda t} e^{-y \sqrt{\lambda / \nu}} \text { and } u_{y=0}=D e^{\lambda t} \tag{4}
\end{equation*}
$$

But by the no slip condition $u_{y=0}=U e^{k t}$ and therefore $D=U$ and $\lambda=k$ therefore

$$
\begin{equation*}
u=U e^{k t} e^{-y \sqrt{k / \nu}} \tag{5}
\end{equation*}
$$

The vorticity becomes

$$
\begin{equation*}
\omega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=\left(\frac{k U^{2}}{\nu}\right)^{1 / 2} e^{k t} e^{-y \sqrt{k / \nu}} \tag{6}
\end{equation*}
$$

The distance $y=\delta$ at which the velocity has declined to $0.1 U$ is given by

$$
\begin{equation*}
e^{-\delta \sqrt{k / \nu}}=0.1 \quad \text { or } \quad \delta=2.30 \sqrt{\nu / k} \tag{7}
\end{equation*}
$$

