An Internet Book on Fluid Dynamics

Solution to Problem 150N:

The constitutive laws for an incompressible, Newtonian fluid (dynamic viscosity, μ) when written in spherical coordinates, (r, θ, ϕ), with velocities $u_{r}, u_{\theta}, u_{\phi}$ in the r, θ, ϕ directions become:

$$
\begin{gather*}
\sigma_{r r}=-p+2 \mu \frac{\partial u_{r}}{\partial r} \tag{1}\\
\sigma_{\theta \theta}=-p+2 \mu\left(\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r}}{r}\right) \tag{2}\\
\sigma_{\phi \phi}=-p+2 \mu\left(\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}+\frac{u_{r}}{r}+\frac{u_{\theta} \cot \theta}{r}\right) \tag{3}\\
\sigma_{r \theta}=\sigma_{\theta r}=\mu\left(r \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}\right) \tag{4}\\
\sigma_{r \phi}=\sigma_{\phi r}=\mu\left(\frac{1}{r \sin \theta} \frac{\partial u_{r}}{\partial \phi}+r \frac{\partial}{\partial r}\left(\frac{u_{\phi}}{r}\right)\right) \tag{5}\\
\sigma_{\theta \phi}=\sigma_{\phi \theta}=\mu\left(\frac{1}{r \sin \theta} \frac{\partial u_{\theta}}{\partial \phi}+\frac{\sin \theta}{r} \frac{\partial}{\partial \theta}\left(\frac{u_{\phi}}{\sin \theta}\right)\right) \tag{6}
\end{gather*}
$$

Since the flow is purely radial $\left(u_{r} \neq 0, u_{\theta}=0\right.$ and $\left.u_{\phi}=0\right)$, the continuity equation for an incompressible fluid requires that

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(r^{2} u_{r}\right)=0 \tag{7}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
r^{2} u_{r}=f(t) \tag{8}
\end{equation*}
$$

or some function, f, of t. But since $u_{r}=d R / d t$ at $r=R(t)$:

$$
\begin{equation*}
f(t)=R^{2} \frac{d R}{d t} \quad \text { and } \quad u_{r}=\frac{R^{2}}{r^{2}} \frac{d R}{d t} \tag{9}
\end{equation*}
$$

Also, setting $u_{r} \neq 0, u_{\theta}=0$ and $u_{\phi}=0$, the stresses become

$$
\begin{gather*}
\sigma_{r r}=-p-\frac{4 \mu R^{2}}{r^{3}} \frac{d R}{d t} \quad ; \quad \sigma_{\theta \theta}=\sigma_{\phi \phi}=-p+\frac{2 \mu R^{2}}{r^{3}} \frac{d R}{d t} \tag{10}\\
\sigma_{r \theta}=\sigma_{\theta \phi}=\sigma_{r \phi}=0 \tag{11}
\end{gather*}
$$

But the balance of forces on a thin lamina of the bubble surface requires that

$$
\begin{equation*}
p_{G}=-\left(\sigma_{r r}\right)_{r=R}+\frac{2 S}{R} \tag{12}
\end{equation*}
$$

where p_{G} is the gas pressure inside the bubble.

Therefore the answer to the question (using $d R / d t=V$) is

$$
\begin{equation*}
p_{G}=p+\frac{4 \mu V}{R}+\frac{2 S}{R} \tag{13}
\end{equation*}
$$

where p is the pressure in the liquid at the bubble surface.
Note that in the liquid at the bubble surface, p is equal to the mean of three normal stresses.

