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Solution to Problem 150L

With the prescription of the flow in this problem, the Navier-Stokes equations become
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The note at the end of the problem provides the solution to the differential equation,

d2X

dr2
+

1
r

dX

dr
− X

r2
= 0

namely
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where A and B are integration constants. In the present problem this yields
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We now apply the boundary conditions to determine the values of A and B. At r = a (the surface of the inner, stationary
cylinder) uθ = 0 by the no-slip condition, so that
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Also at r = b (the surface of the outer, rotating cylinder) uθ = Ωb, where Ω is the angular velocity of the outer cylinder, so
that
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Substituting these expressions for A and B into the flow solution yields
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Using this solution the first equation yields
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and integrating this yields
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where C is an integration constant. This can be used to find the pressure difference between the surfaces of the two cylinders,
namely

p(b) − p(a) =

[
ρ

Ω2b4

(b2 − a2)2

(
1
2
b2 − 2a2 ln b − a4

2b2

)]
−

[
ρ

Ω2b4

(b2 − a2)2

(
1
2
a2 − 2a2 lna − a2

2

)]

which simplifies to
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